scholarly journals Preparation of Ti–Zr-Based Conversion Coating on 5052 Aluminum Alloy, and Its Corrosion Resistance and Antifouling Performance

Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Hehong Zhang ◽  
Xiaofeng Zhang ◽  
Xuhui Zhao ◽  
Yuming Tang ◽  
Yu Zuo

A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.

2012 ◽  
Vol 490-495 ◽  
pp. 3527-3530 ◽  
Author(s):  
Ai Hua Yi ◽  
Wen Fang Li ◽  
Jun Du ◽  
Song Lin Mu

By adding tannic acid and film-forming accelerator in the treatment solution containing titanium and zirconium ions, a golden conversion coating on the surface of aluminum alloy was prepared. The main component and corrosion resistance of the conversion coating were characterized by means of EDS, SEM, XRD and electrochemical workstation. The conversion coating was golden and showed as uniform cubical crystal. results also showed that the main component of the conversion coating was Na3AlF6. In potentiodynamic polarization test, the corrosion current density of the aluminum alloy decreases to 0.083 A•cm-2 from 5.894 A•cm-2, which indicated an obvious improvement of corrosion resistance.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4904
Author(s):  
Hyunbin Jo ◽  
Soomin Lee ◽  
Donghyun Kim ◽  
Junghoon Lee

Sealing as a post treatment of anodized aluminum is required to enhance the corrosion resistance by filling nanopores, which allow the penetration of corrosive media toward the base aluminum. We designed a mixed sealing solution with nickel acetate and ammonium fluoride by modifying traditional nickel fluoride cold sealing. The concentration of mixed sealing solution affected the reaction rate of sealing and corrosion current density of anodized aluminum alloy. The higher concentration of mixed sealing solution improved the sealing rate, which was represented by a decrease of corrosion current density of anodized aluminum alloy. However, a mixed sealing solution with 2/3 concentration of general nickel fluoride sealing solution operated at room temperature showed the lowest corrosion current density compared to traditional methods (e.g., nickel fluoride cold sealing (NFCS) and nickel acetate hot sealing) and other mixed sealing solutions. Moreover, the mixed sealing solution with 2/3 concentration of general NFCS had a lower risk for over sealing, which increases the corrosion current density by excessive dissolution of anodic oxide. Therefore, the mixed sealing solution with optimized conditions designed in this work possibly provides a new method for enhancing the corrosion resistance of anodized aluminum alloys.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


2015 ◽  
Vol 12 (6) ◽  
Author(s):  
Ing-Bang Huang ◽  
Ching Chiang Hwang

The objective of this study is to examine the effect of heat treatment at various temperatures on the corrosion behavior of electroless silver-coated SS 304 in a simulated proton exchange membrane (PEM) fuel cell environment. The corrosion properties of this material were studied using a potentiodynamic polarization technique. X-ray diffraction (XRD) patterns, polarization curves, and scanning electron microscopy (SEM) of coated and heat-treated specimens obtained in various heating temperatures were also utilized. It was found that the corrosion potential of the coated and heat-treated specimens shift toward a noble potential, and a significant decrease in corrosion current density was also observed. The corrosion current density decreased by a factor of about 1/500 for the heat-treated sample of 600 °C compared to the substrate. The heat-treated specimens displayed greater corrosion resistance than unheated and bare ones. According to the polarization studies and SEM images, the heat-treated specimen at 600 °C shows excellent corrosion resistance with a homogeneous dense surface morphology. These results demonstrated the coatings were suited for fuel cell applications in the proton exchange membrane fuel cell (PEMFC) environment.


2020 ◽  
Vol 10 (9) ◽  
pp. 1435-1443
Author(s):  
Dong Wang ◽  
Chenxi Wang ◽  
Changqing Fang ◽  
Xing Zhou ◽  
Mengyuan Pu ◽  
...  

The corrosion process of carbon steel and corrosion resistance behavior of volatile corrosion inhibitor (VCI) under thin electrolyte liquid film containing chloride was investigated by electrochemical measurements and surface characterization. Results indicated that composite VCI was composed of sodium molybdate and sodium benzoate, and exhibited higher corrosion resistance in 3.5% NaCl solution compared with absence of VCI. The corrosion current density obviously decreased with presence of VCI, and the synergies between binary components increased the corrosion inhibiting rate on carbon steel to up to 90%. The corrosion current density of carbon steel increased with increased temperature after volatilization of VCI. A closed container was carried out to mimic atmospheric corrosion condition, and its vapor corrosion inhibition property was evaluated in this closed container. Results showed that the VCI acted as an inhibitor by suppressing anodic dissolution and metallic ion transfer through the formation of protective film. It was also observed that the variation of carbon steel surface with volatilization of VCI was assessed by atomic force microscope (AFM) and scanning electron microscope (SEM). The anodic process for carbon steel without VCI affected the corrosion rate due to accumulation of corrosion products, while the morphology of carbon steel was hardly changed with volatilization of VCI. The results showed that the VCI volatilized to the surface and form to protect film. VCI was automatically volatilized into gas, which protected steel from corrosion. This composite VCI can then be applied as a significant corrosion inhibition method.


2016 ◽  
Vol 852 ◽  
pp. 1325-1333
Author(s):  
Li Chen Zhao ◽  
Shuang Jin Liu ◽  
Yu Min Qi ◽  
Chun Xiang Cui

A binary Mg-4Zn alloy was fabricated as a potential degradable biomaterial. To improve the corrosion resistance of Mg-4Zn alloy, an amorphous micro-arc oxidation (MAO) coating was prepared on the Mg-4Zn substrate. Electrochemical measurements and immersion tests were employed to evaluate the corrosion resistance of the specimen in simulated body fluid (SBF). Electrochemical measurements show that the Mg-4Zn alloy covered with a MAO coating has a much lower corrosion current density and a much greater polarization resistance. Immersion tests suggest that the degradation of Mg-4Zn substrate is relatively serious during the initial 8 h of immersion although it has been protected by a MAO coating. When most micro-pores within the MAO coating have been filled with precipitates resulted from the corrosion of the metal substrate, the degradation of the Mg-4Zn substrate is significantly delayed.


2011 ◽  
Vol 117-119 ◽  
pp. 1365-1369
Author(s):  
Kyung Man Moon ◽  
Myung Hoon Lee

Galvanizing method is being widely used to the numerous constructional steels such as a guard rail of high way, various types of structural steel for manufacturing ship and for some other fields etc.. However, galvanized structures inevitably may be corroded rapidly with increasing exposed time because the rate of environmental contamination is accelerating due to the rapid development of industrial society. Therefore, it is necessary to improve the corrosion resistance of the galvanizing film through various methods such as variation of chemical composition of galvanizing bath, chromate treatment and coating treatment etc.. In this study, three types of the test specimens, that is, pure galvanizing, galvalume and chromate treated steels were immersed at inhibitor solution. And the effect of inhibitor for their corrosion resistance improvement was comparatively investigated with an electrochemical method. Corrosion current density of the original galvanizing and galvalume steel exhibited the highest and lowest value respectively in seawater. However, the corrosion resistance of these samples was considerably improved by dipped to a inhibitor solution(H3PO4+ Zn(NO3)2+Q). In particular, the galvanizing steel which dipped to the inhibitor solution exhibited the lowest corrosion current density due to the best effect of corrosion resistance improvement compared to other test specimens.


2012 ◽  
Vol 182-183 ◽  
pp. 241-244
Author(s):  
Cheng Bao Xia ◽  
Wen Jun Ge ◽  
Hou Chuan Yang

In order to improve the repairing quality of aircraft envelope of the aluminum alloy LY12, the cerium conversion coating technology was studied by using the surface modification technique. Principle experiment was on the basis of aviation repair technological requirement, refers to the related technique, through examination of corrosion resistance and wear resistance performance of cerium conversion coating, the principal composition of the formula for making cerium conversion coating:Ce(NO3)3 + KMnO4+ Ce-1 (chemical additive), In order to determine each composition of the formula and the technology parameters scientifically, L9(34) orthogonal testing method was adopted, and the formula of surface modification solution was optimized, the technological conditions for making cerium conversion coating on the surface of aircraft envelope were determined. Results of corrosion resistance and wear resistance of the cerium conversion coating on the surface of the aluminum alloy LY12 aircraft envelope obtained by the new technology showed: 1. On the given test conditions, the best content of each chemical composition in the formula of modification solution for making cerium conversion coating on the surface were: l.Ce(NO3)3:14g/L,KMnO4:1g/L,addictive Ce-1:0.3g/L;Main technology parameters were :pH=1.5~2.7;temperature:20°C;time:15~25 min.;2. Under the same test condition, the corrosion resistance of surface of the cerium conversion coating obtained in test modification solution was better than Alodine 1001 obtained from Bombardier Corporation of Canada, and can meet the repairing demands of Aircraft Envelope.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1855
Author(s):  
Yunpeng Hu ◽  
Delong Dong ◽  
Xiangyu Wang ◽  
Hongtang Chen ◽  
Yang Qiao

The magnesium alloys Mg-0.5Mn-2Zn, Mg-1.0Mn-2Zn, and Mg-1.5Mn-2Zn (wt.%) with potential biomedical applications, synthesized by powder metallurgy, were investigated to evaluate the influence of manganese content on their microstructure, mechanical properties, and corrosion resistance. The results show that Mg-Mn-Zn alloys prepared by powder metallurgy reached the maximum compressive stress of 316 MPa and the maximum bending strength of 186 MPa, showing their good resistance to compression and bending, and meeting the mechanical properties required for the human bone plate. With an increase in manganese content, the corrosion resistance improved. In the polarization curve, the maximum positive shift of corrosion potential was 92 mV and the maximum decrease of corrosion current density was 10.2%. It was concluded that, of the alloys tested, Mg-1.0Mn-2.0Zn (wt.%) had the best overall performance, and its maximum compressive stress force and corrosion current density reached 232.42 MPa and 1.32 × 10−5 A·cm−2, respectively, being more suitable for service in human body fluids.


Sign in / Sign up

Export Citation Format

Share Document