Luminescence Characteristics of Li2O3:Gd2O3:B2O3:Dy2O3 Glasses System

2016 ◽  
Vol 675-676 ◽  
pp. 414-417
Author(s):  
Kitipun Boonin ◽  
Warawut Sa-Ardsin ◽  
Jakrapong Kaewkhao

Melt quenching technique have been used to prepare the dysprosium-doped lithium-gadolinium borate glasses, which have the composition [60Li2O:10Gd2O3:(30-x) B2O3:xDy2O3] (LGBO:Dy3+), under atmospheric pressure. Some properties: density, molar volume, absorption spectra and photoluminescence of the LGBO:Dy3+ glasses were investigated and discussed. The density of glasses drops to the minimum point at 0.05 mol% and swings after that point. The molar volume of the glasses does not depend on Dy2O3concentration. In absorption spectra for the range of visible to near infrared wavelengths, there are 5 obvious peaks indicating the Dy3+ in glass network. The intensity of each peak at certain wavelength increases with concentration of the Dy2O3. Whereas the excitation spectra show 7 obvious peaks representing the transitions from the ground state 6H15/2to various excited states. The Xenon compact arc lamps were used to measure the emission spectra with 388 nm light. As the result, the LGBO:Dy3+ glass sample with 0.50 mol% of Dy3+ shows the highest intensity in the emission spectra.

2014 ◽  
Vol 979 ◽  
pp. 479-482 ◽  
Author(s):  
Warawut Sa-Ardsin ◽  
Patarawagee Yasaka ◽  
J. Kaewkhao ◽  
K. Boonin

The samarium-doped lithium-gadolinium borate [60Li2O:10Gd2O3:(30-x) B2O3:xSm2O3] (LGBO:Sm3+) glasses have been melted and quenched in stainless plate under an air atmosphere. Some physical and optical properties within wavelength concerned and photoluminescence of the LGBO:Sm3+glasses were measured and discussed. The density of glasses dropped until 0.10 mol% and tends to increase after that point, while molar volume of the glasses tends to increase with concentration of Sm2O3.. In absorption spectra, there are 2 obvious peaks in UV-VIS range and 6 peaks in NIR range indicating the Sm3+in glass matrices. The sharpness of a peak, in the absorption spectra, also increases with concentration of the dopant. The 7 obvious peaks in excitation spectra represent the transitions from the ground state6H5/2to various excited states. Furthermore, The emission spectra were observed under 404 nm light from the Xenon compact arc lamps, and showed the concentration quenching effect (CQE) at 1.00 mol% of Sm3+. Additional, The lifetimes showed decreasing trend with concentration of Sm2O3.. As the result, The LGBO:Sm3+glass doped with 1.00 mol% of Sm3+gives the highest result for luminescence properties.


2016 ◽  
Vol 675-676 ◽  
pp. 368-371 ◽  
Author(s):  
Yaowaluk Tariwong ◽  
Natthakridta Chanthima ◽  
Jakrapong Kaewkhao ◽  
Narong Sangwaranatee ◽  
Hong Joo Kim

This paper reports on physical, optical and photoluminescence properties of Sm3+doped calcium barium phosphate (CaO: BaO: P2O5: Sm2O3) glass systems. The glass samples have been prepared by the melt-quenching technique at 1200°C. It was found that the density of glasses tended to increase with increasing of Sm2O3 concentration. While, the molar volume of glasses tended to decrease with increasing of Sm2O3 concentration higher than 0.1 mol%. The absorption spectra of glasses were recorded in the ultraviolet visible near infrared (UV-Vis-NIR) region. The absorption bands centered at 374, 402, 416, 438, 473, 527, 946, 1083, 1236, 1382, 1483, 1531 and 1977 nm, respectively have been observed. The emission spectra of glass samples centered at 561, 597, 643 and 704 nm corresponding to the energy levels from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2, respectively have been observed with 402 nm excitation wavelength.


2016 ◽  
Vol 675-676 ◽  
pp. 376-379 ◽  
Author(s):  
Narun Luewarasirikul ◽  
Piyachat Meejitpaisan ◽  
Jakrapong Kaewkhao

Lanthanum calcium phosphate glasses doped with Eu3+ ions in compositions 20La2O3:10CaO:(70-x)P2O5:xEu2O3 (where x = 0.05, 0.10, 0.50 and 1.50 mol%) were prepared by melt-quenching technique. The density and molar volume measurements were carried out at room temperature. The absorption spectra were investigated in the UV-Vis-NIR region from 200 to 2500 nm. The emission spectra of Eu3+-doped glasses centered at 590 nm (5D0→7F1), 612 nm (5D0→7F2), 652 nm (5D0→7F3) and 699 nm (5D0→7F4) have been observed with 393 nm excitation wavelength.


2003 ◽  
Vol 771 ◽  
Author(s):  
Thomas M. Cooper ◽  
Benjamin C. Hall ◽  
Daniel G. McLean ◽  
Joy E. Rogers ◽  
Aaron R. Burke ◽  
...  

AbstractAs part of an effort to develop a spectroscopic structure-property relationship in platinum acetylide oligomers, we have prepared a series of bidentate Pt(PBu3)2L2 compounds. The ligand was the series o-syd-C6H4-CΞC-(C6H4-CΞC)n-H, n = 0,1,2. The terminal oligomer unit consisted of a sydnone group ortho to the acetylene carbon. The compounds were characterized by various methods, including 13C-NMR, ground state absorption, fluorescence, phosphorescence and laser flash photolysis. The acetylenic 13C-NMR resonances showed sydnone influences that decreased with increasing number of monomer units. The ground state absorption spectra were slightly red shifted from those of the baseline oligomers not having a sydnone group. The low temperature emission and excitation spectra showed complex dependence on excitation and emission wavelengths, suggesting the chromphores resided in a distribution of solvent environments and conformations. Finally, broad triplet state absorption spectra were observed, with absorption throughout the visible and near infrared regions.


2017 ◽  
Vol 893 ◽  
pp. 156-160
Author(s):  
Rong Xue Wang ◽  
Xiao Bing Luo

CaWO4: xNd3+ (x = 0.005, 0.008, 0.01, 0.015, 0.02, 0.025 0.03) powders have been synthesized by high-temperature solid state reaction. The results of the XRD indicate that Nd3+ ions have entered into the crystal lattice in all compounds successfully. The reflectance spectra show that the matrix has strong absorption. The emission spectra, excitation spectra and different lifetimes between CaWO4 and CaWO4: 0.5% Nd3+ indicate that efficient energy transfer occurs from WO42- cluster to Nd3+ ions. On the basis of the above work, the dependence of fluorescent spectra on temperature was studied. It turned out that, not only the excitation spectra appeared red shift with increasing temperature, but also the dependence of the near infrared fluorescent intensity on temperature is fitting with a linear function. It might be served as a promising phosphor for temperature sensor device.


1994 ◽  
Vol 48 (4) ◽  
pp. 436-447 ◽  
Author(s):  
J. W. Hofstraat ◽  
M. J. Latuhihin

Several methods that can be applied to remove wavelength-dependent instrumental effects from fluorescence emission and excitation spectra have been investigated. Removal of such artifacts is necessary for the comparison of spectra that have been obtained on different instruments. Without correction, spectral line positions and relative intensities will be instrument-determined to a great extent. Furthermore, the application of adequate correction procedures provides excitation spectra which can be directly compared to absorption spectra; comparison of corrected excitation spectra and absorption spectra can be used to interpret the efficiency and pathways of radiative processes. Finally, corrected reflection spectra can be obtained, which can be directly transformed into absorption spectra and are useful for remote sensing applications. The methods that have been studied for the correction of emission spectra are the application of a standard lamp with calibrated spectral output and the use of fluorescence standards. The standards are a series of luminescent phosphors in polymer films and a solution of quinine sulfate dihydrate in perchloric acid, all provided with certified spectral emission values. For correction of excitation spectra, a quantum counter was applied. Several quantum counters were investigated. The best results were obtained for application of a mixture of the dyes basic blue and HITC, which provided good correction for the wavelength range 250 to 820 nm. No good quantum counters have been reported thus far for this (large) wavelength range. Correction for wavelength dependence of the excitation optics was realized by measurement of the excitation light intensity at the sample position and at the reference position with a Si photodiode. Correction factors for the excitation spectra were checked with a number of reference materials. Attention has also been paid to polarization-dependent effects that may occur in fluorescence spectra. The application of correction procedures was demonstrated for phytoplankton fluorescence spectra.


2011 ◽  
Vol 366 ◽  
pp. 215-218 ◽  
Author(s):  
Su Wen Li

The CeF3 nanophosphors with Yb3+ concentrations from 0 to 8% had been prepared by hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). Their photoluminescence properties including excitation spectra, Uv-visibe and near infrared (NIR) emission spectra and fluorescence dynamics were studied. In the CeF3: Yb3+ nanophosphors an intensity infrared emission originated from Yb3+2F5/2 - 2F7/2 transition at 900-1050 nm matching to the energy of Si band gap of Si-based solar cells was observed under the excitation of 5d level of Ce3+. The lifetime of Ce3+ decreases and the quantum efficiency (QE) increases with increasing Yb3+ concentration.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 121
Author(s):  
Joanna Pisarska ◽  
Wojciech A. Pisarski ◽  
Radosław Lisiecki ◽  
Witold Ryba-Romanowski

In this work, spectroscopic properties of europium and erbium ions in heavy metal oxide glasses have been studied. The phonon energy of the glass host was determined based on Eu3+ excitation spectra measurements. Near-IR emission spectra at 1550 nm related to 4I13/2 → 4I15/2 transition of erbium in heavy metal glasses were examined with special regards to luminescence bandwidth and measured lifetime. In particular, correlation between phonon energy and the measured lifetime 4I13/2 (Er3+) was proposed. The luminescence lifetime for the 4I13/2 upper laser state of erbium decreases with increasing phonon energy in glass matrices. Completely different results were obtained glass samples with europium ions, where the 5D0 lifetime increases with increasing phonon energy. Our investigations suggest that the values of measured 5D0 lifetime equal to radiative lifetimes for all heavy metal oxide glasses.


1990 ◽  
Vol 185 ◽  
Author(s):  
Londa J. Larson ◽  
Jeffrey I. Zink

AbstractThe red/near-infrared emission spectra of alizarin (1,2-dihydroxyanthraquinonone), the potassium salt of alizarin and the aluminum and zinc complexes of alizarin in the solid state are reported. The emission is assigned to an alizarin localized transition from an in-plane nonbonding orbital delocalized over the anthraquinone rings to a predominantly π* C=O acceptor orbital (nπ* ligand localized excited state). The cobalt, nickel and copper complexes do not emit from their nπ* excited state. In these complexes, metal centered d-d excited states which lie lower in energy than the ligand localized state effectively deactivate the luminescence.


1990 ◽  
Vol 45 (5) ◽  
pp. 669-676 ◽  
Author(s):  
H.-J. Schulz ◽  
G. Roussos ◽  
S. W. Biernacki

Abstract The luminescence of synthetic ZnS: V crystals is studied at low temperatures (T % 4 K). The emission spectra comprise (i) a structured band centred around v = 5600 cm-1 , assigned to 3T2(F) ->• 3A2(F) transitions of substitutional V3+ (3d2) ions in a tetrahedral field, and (ii) a band around 4800 cm-1 assigned to 4T2(F) -> 4T1(F) transitions of V2+ (3d3) ions. In the range of the narrow no-phonon lines detected with both these emission bands, a temperature rise from 2 to 5 K entails a thermalisation in the population of the spin-orbit multiplets forming the initial states of the corresponding transitions. A third emission band near 3800 cm-1 grows after annealing the crystals in Zn vapour. It is tentatively attributed to 5E(D) -> 5T2(D) transitions of V+ (3d4). A model of one-electron states represents donor-type as well as acceptor-type changes of the vanadium oxidation states, commencing from V2+ , the state with neutral effective charge. The model is substantially founded on the measured excitation spectra of the V3+ and V2+ emission bands, supplemented by transmission spectra. Besides the corresponding broad charge transfer bands, the spectra display a number of structures which are associated with excited states of the ions. These energy levels are approximated in a computation following the strong-field Tanabe-Sugano scheme but in addition allowing for different radial extensions of e- and t2-type wave functions. The method used also includes the possibility of fitting the free-ion levels. Various sets of numerical values are eventually obtained for the crystal-field splitting and the Racah parameters. Some of the levels involved are found to be subject to Jahn-Teller interaction.


Sign in / Sign up

Export Citation Format

Share Document