Development and Modeling of a Macro/Micro Composite Positioning System for Microelectronics Manufacturing

2016 ◽  
Vol 679 ◽  
pp. 135-142 ◽  
Author(s):  
Lan Yu Zhang ◽  
Jian Gao ◽  
Hui Tang

A macro-micro composite positioning stage with high acceleration and high precision is presented in this paper. A linear voice coil motor (VCM) is used to generate the macro motion, and a piezoelectric (PZT) actuator is adopted to drive the micro stage to achieve a precision micro motion, while PZT actuator can also be used to compensate the position error. A high-resolution grating is integrated into the stage to establish the closed-loop feedback. To research the mechanical dynamic characteristic of the stage, the mechanical dynamic model of the macro mechanism and micro mechanism are established, which is based on the rigid-flexible mixed dynamics of mechanical system. The dynamic characteristics of macro motion and micro motion are studied in detail, which is based on the mechanical dynamic simulation of Matlab. The accuracy of the established dynamic model and the performance of the stage are tested by using the scanning laser vibrometer. Both of the simulation results and test results show that the established model can well reflect the dynamic characteristics of the macro-micro composite positioning stage. It also indicates that the developed stage can well achieve a high acceleration and high precision motion, which aims to be applied in microelectronics manufacturing.

Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Yi Zhou ◽  
Lin Yang ◽  
Changyue Fan ◽  
...  

Abstract Aiming at the current development of drilling technology and the deepening of oil and gas exploration, we focus on better studying the nonlinear dynamic characteristics of the drill string under complex working conditions and knowing the real movement of the drill string during drilling. This paper firstly combines the actual situation of the well to establish the dynamic model of the horizontal drill string, and analyzes the dynamic characteristics, giving the expression of the force of each part of the model. Secondly, it introduces the piecewise constant method (simply known as PT method), and gives the solution equation. Then according to the basic parameters, the axial vibration displacement and vibration velocity at the test points are solved by the PT method and the Runge–Kutta method, respectively, and the phase diagram, the Poincare map, and the spectrogram are obtained. The results obtained by the two methods are compared and analyzed. Finally, the relevant experimental tests are carried out. It shows that the results of the dynamic model of the horizontal drill string are basically consistent with the results obtained by the actual test, which verifies the validity of the dynamic model and the correctness of the calculated results. When solving the drill string nonlinear dynamics, the results of the PT method is closer to the theoretical solution than that of the Runge–Kutta method with the same order and time step. And the PT method is better than the Runge–Kutta method with the same order in smoothness and continuity in solving the drill string nonlinear dynamics.


2021 ◽  
pp. 2010199
Author(s):  
Jeong Hui Kim ◽  
Kyung Gook Cho ◽  
Dae Hyun Cho ◽  
Kihyon Hong ◽  
Keun Hyung Lee

2019 ◽  
Vol 52 (15) ◽  
pp. 477-482 ◽  
Author(s):  
Francesco Cigarini ◽  
Shingo Ito ◽  
Julian Konig ◽  
Andreas Sinn ◽  
Georg Schitter

MAPAN ◽  
2014 ◽  
Vol 30 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Rajat Sen ◽  
Chinmoy Pati ◽  
Samik Dutta ◽  
Ranjan Sen

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Jiang ◽  
Yating Shi ◽  
Dehua Zou ◽  
Hongwei Zhang ◽  
Hong Jun Li

Purpose The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript. Design/methodology/approach Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB. Findings The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque. Originality/value Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.


Sign in / Sign up

Export Citation Format

Share Document