Influence of Voltage on the Biological Performance of Micro-Arc Oxide Films Based on TC4 Titanium Alloy

2016 ◽  
Vol 697 ◽  
pp. 612-616
Author(s):  
Ji Kang Yan ◽  
Yuan Teng ◽  
Er Xin Ni ◽  
Yun Feng Wu ◽  
Yan Hua Sun ◽  
...  

The porous ceramic biologic films were prepared on the surface of Ti6Al4V (TC4) with micro-arc oxidation technology (MAO). The phase composition, microstructure and valence state of micro-arc oxide films were studied. The biological properties of the ceramic film were comprehensive evaluated through animal experiments. Results show that with increasing of the micro-arc oxidation voltage, the better biocompatible hydroxyapatite appears on the surface of titanium alloy (TC4). The high voltage promotes the surface pore size enlarge. The porous ceramic surface makes bone tissue early grow up. Pathological sections of bone tissue 24 w animal experiments indicates that the implants can form good biological combination with bone, no rejection and the higher the micro-arc oxidation voltage, the more new bone cells.

2016 ◽  
Vol 697 ◽  
pp. 617-622 ◽  
Author(s):  
Yuan Teng ◽  
Wan Xia Tang ◽  
Er Xin Ni ◽  
Yun Feng Wu ◽  
Yan Hua Sun ◽  
...  

The porous ceramic biologic films were prepared on the surface of Ti6Al4V (TC4) with micro-arc oxidation technology (MAO). The phase composition, microstructure and cross section morphology, surface elements composition and valence state of micro-arc oxide films were studied. Results show that with increasing of the micro-arc oxidation voltage, the better biocompatible hydroxyapatite appears on the surface of titanium alloy (TC4). The high voltage promotes the surface pore size enlarge.


2014 ◽  
Vol 86 (12) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hyo Seung Park ◽  
Su Yeon Lee ◽  
Hyunsik Yoon ◽  
Insup Noh

Abstract Design of micro-patterning of hydrogel is of critical importance in both understanding cellular behaviors and mimicking controlled microenvironments and architectures of diverse well-organized tissues. After micro-patterning of hyaluronic acid (HA) hydrogel on a poly(dimethyl siloxane) substrate, its physical and biological properties have been compared with those of a non-patterned hydrogel for its possible applications in bone tissue engineering. The micro-patterned morphologies of HA hydrogel in both swollen and dehydrated forms have been observed with light microscope and scanning electron microscope, respectively, before and after in vitro cell culture. When MC3T3 bone cells were in vitro cultured on both HA hydrogels, the micro-patterned one shows excellence in cell proliferation and lining for 7 days along the micro-pattern paths over those of the non-patterned one, which have shown less cell-adhesiveness. The cytotoxicity of the micro-patterned HA hydrogels was in vitro evaluated by the assays of MTT, BrdU and Neutral red. The viability and morphology of MC3T3 cells on both HA hydrogels were observed with a fluorescence microscope by the live & dead assay, where their viability was confirmed by staining of F-actin development. The results of their H&E staining showed that both micro-patterned and non-patterned hydrogels induced development of tissue regeneration as observed by cell attachment, proliferation, and survivability, but the micro-patterned one induced distinctive patterning of both better initial cells adhesion on the micro-patterns and subsequently development of their proliferation and extracellular matrix, which were considered as important characteristics in their applications to tissue engineering.


2022 ◽  
pp. 1-10
Author(s):  
X W Chen ◽  
P Ren ◽  
D F Zhang ◽  
J Hu ◽  
C Wu ◽  
...  

In this study, ceramic coatings were prepared on the surface of TC4 titanium alloy by micro-arc oxidation (MAO). The morphology, element distribution and phase composition of MAO coatings were analyzed by SEM, EDS, XRD and other analytical methods. The effect of hexagonal boron nitride(h-BN) doping on wear resistance and corrosion resistance of micro-arc oxidation layer was studied. The results show that the coating is mainly composed of rutile TiO2, anatase TiO2 and a small amount of h-BN. Furthermore, the composite coating containing h-BN was less porous than particle-free coating. The test results show that h-BN doping slightly affects the hardness of the MAO coating, and it is helpful in improving the thickness, corrosion resistance and wear resistance of the coatings. When the amount of h-BN is 3 g/L, the corrosion current density of the coating is the smallest; When the addition of h-BN is 1.5 g/L, the friction coefficient of the coating is the smallest. The wear mechanism was adhesive wear, accompanied by slight abrasive wear.


2016 ◽  
Vol 852 ◽  
pp. 1050-1054 ◽  
Author(s):  
Yong Du ◽  
Xiu Zhou Lin ◽  
Xue Jun Cui ◽  
Qian Wei Wang ◽  
Hui Li

Micro-arc oxidation coating on TC4 titanium alloy was fabricated in Na2SiO3-Na3PO4 -NaOH electrolyte under constant voltage mode using a multifunctional device that is self-designed. The effects of negative duty cycle on the coating thickness, surface morphology, hardness, phase composition and anti-corrosion were studied via SEM, XRD etc. The results show that, with increasing the negative duty cycle, the coating thickness is reduced; the coating surface presents typical ceramic structure with micro-pores, the quantity of micro-pores on coating surface is reduced, the diameter of pores is enlarged and cracks are appeared with the increase of negative duty cycle; the phase ingredients are mainly composed of Ti, rutile and anatase TiO2 and the peak of matrix is disappeared while the dc is added to 45%; the hardness and corrosion resistance of coatings are distinctly improved compared with the matrix, with increasing the dc, the coating hardness is strengthened while the anti-corrosion is weakened.


2008 ◽  
Vol 375-376 ◽  
pp. 323-327
Author(s):  
Ying Xue Yao ◽  
Li Qun Li ◽  
Jian Jun Xi

The effect of technological parameters on MAO ceramic coating were investigated through the technique of micro-arc oxidation (MAO) on TC4 titanium alloy and. Microstructure and morphology of coatings were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The result shows that electric parameters and compositions of the electrolyte have notable effects on the growth of MAO ceramic coatings. The cathodic and anodic voltage rise gradually with the oxidation time increasing. The growth rate of ceramic coating is fast at the beginning, and then turns slowly. The ceramic coatings can be divided into three layers from interior to exterior, such as the transition layer, the dense layer and the porous layer. The coating is mainly composed of rutile and anatase and combined with the substrate firmly. The ceramic coating’s composition in inner and outer layers appears quite different. The ceramic coating on titanium alloy is of excellent performance on anti-attrition and anti-corrosion.


2020 ◽  
Vol 990 ◽  
pp. 44-49
Author(s):  
Xing Sheng Lao ◽  
Xu Feng Zhao ◽  
Yong Liu ◽  
Chun Hui Dai ◽  
Wei Jian Lv

In order to study the effect of microarc oxidation modification treatment on the friction properties of titanium alloy surface, the surface treatment layer of Ti-6Al-4V ELI specimen modified by Microarc oxidation surface was sampled, the surface layer hardness, roughness and treatment layer thickness were tested, the microscopic morphology was analyzed, The friction tests of TC4 substrate and micro-arc oxidation treatment surface disc with 25% glass fiber, 15% fiberglass +5% graphite and 60% tin bronze reinforced PTFE pin were carried out, and the results showed that the thickness increased slightly and the surface layer hardness increased by about 75% after the micro-arc oxidation surface modification treatment. Compared with the substrate, the surface roughness is obviously improved, and the friction coefficient of the surface treatment specimen is similar to that of the TC4 titanium alloy substrate, but the wear amount is higher than that of the TC4 titanium alloy substrate.


2009 ◽  
Vol 631-632 ◽  
pp. 141-146 ◽  
Author(s):  
Sofiane Bouazza ◽  
Elke Fuchs ◽  
Andreas Rosin ◽  
Monika Willert-Porada

Functionally graded materials for load bearing implants have a long history of academic development and an already high degree of maturity. Efforts are now undertaken to improve the biocompatibility and even induce bioactivity within the implant-bone interface by optimised surface nanostructure of porous ceramic and metalic layers grown or sintered on a metallic implant, in order to arrive at cementless implants capable of fast osteointegration and high interface strength. Several new methods for surface structure and composition modification are presented for Ti-alloy based implants: a nano-structuring of the surface by re-deposition of TiO2 using an ECR-Microwave Plasma treatment combined with ion bombardment on a sintered TiO2 ceramic surface, a multiscale modification of porous Ti-coatings by means of Micro-Arc-Oxidation, MAO, and a meso-structuring of the surface by means of a laser treatment. The goal is to establish a multi-functionality in such materials by formation of a morphological and compositional gradient spanning many dimensions. The applicability of these methods to real implants is discussed for a dental implant.


Sign in / Sign up

Export Citation Format

Share Document