Corrosion and Wear Properties of h-BN Modified TC4 Titanium Alloy Micro-Arc Oxide Coatings

2022 ◽  
pp. 1-10
Author(s):  
X W Chen ◽  
P Ren ◽  
D F Zhang ◽  
J Hu ◽  
C Wu ◽  
...  

In this study, ceramic coatings were prepared on the surface of TC4 titanium alloy by micro-arc oxidation (MAO). The morphology, element distribution and phase composition of MAO coatings were analyzed by SEM, EDS, XRD and other analytical methods. The effect of hexagonal boron nitride(h-BN) doping on wear resistance and corrosion resistance of micro-arc oxidation layer was studied. The results show that the coating is mainly composed of rutile TiO2, anatase TiO2 and a small amount of h-BN. Furthermore, the composite coating containing h-BN was less porous than particle-free coating. The test results show that h-BN doping slightly affects the hardness of the MAO coating, and it is helpful in improving the thickness, corrosion resistance and wear resistance of the coatings. When the amount of h-BN is 3 g/L, the corrosion current density of the coating is the smallest; When the addition of h-BN is 1.5 g/L, the friction coefficient of the coating is the smallest. The wear mechanism was adhesive wear, accompanied by slight abrasive wear.

2010 ◽  
Vol 105-106 ◽  
pp. 505-508 ◽  
Author(s):  
Zhen Dong Wu ◽  
Zhong Wen Yao ◽  
Fang Zhou Jia ◽  
Zhao Hua Jiang

The coatings containing zirconia were produced on LY12 Aluminium alloy by micro-arc oxidation in K2ZrF6 and NaH2PO2 solution. The composition, structure, hardness, friction and wear resistance and corrosion resistance of the coating were studied by XRD, SEM, EDS, ball-on-disk friction tester and electrochemical analyzer, respectively. The results show that coating was composed of m-ZrO2 and t-ZrO2. There were a large amount of Zr and O and a little Al, P and K in the coating. The thickness of coating prepared for 3h was 168μm and the maximum value of the hardness was up to 16.75GPa. The friction and wear resistance and corrosion resistance were improved, compared with the LY12 aluminium alloy substrate.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 970 ◽  
Author(s):  
Xiaoben Qi ◽  
Hailong Shang ◽  
Bingyang Ma ◽  
Rulin Zhang ◽  
Leyang Guo ◽  
...  

The interaction effect of micro arc oxidation (MAO) parameters on the microstructure and wear properties was investigated. The results showed that the electric current and oxidation time significantly influenced the thickness and grinding crack width of the ceramic coatings within the range of the selected parameters, and the interaction effect of the electrical parameters was not obvious. The surface morphology, cross-section morphology, and element distribution of the coatings were observed using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that ceramic coatings with γ-Al2O3 and α-Al2O3 formed, which enhanced the coating performance. After that, the microhardness and wear resistance were tested. Under the optimal process, the microhardness of a coating section was up to 1200 HV0.1, and the friction coefficient was just 0.3. When wear occurred, the volcanic microstructures experienced extrusion and deformation, and then peeled off under shear stress, which led to the formation of a grinding crack. The main failure modes of the micro arc oxidation coatings were abrasive wear and spalling failure.


2008 ◽  
Vol 375-376 ◽  
pp. 323-327
Author(s):  
Ying Xue Yao ◽  
Li Qun Li ◽  
Jian Jun Xi

The effect of technological parameters on MAO ceramic coating were investigated through the technique of micro-arc oxidation (MAO) on TC4 titanium alloy and. Microstructure and morphology of coatings were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The result shows that electric parameters and compositions of the electrolyte have notable effects on the growth of MAO ceramic coatings. The cathodic and anodic voltage rise gradually with the oxidation time increasing. The growth rate of ceramic coating is fast at the beginning, and then turns slowly. The ceramic coatings can be divided into three layers from interior to exterior, such as the transition layer, the dense layer and the porous layer. The coating is mainly composed of rutile and anatase and combined with the substrate firmly. The ceramic coating’s composition in inner and outer layers appears quite different. The ceramic coating on titanium alloy is of excellent performance on anti-attrition and anti-corrosion.


2014 ◽  
Vol 21 (02) ◽  
pp. 1450026
Author(s):  
ZHAO QING LIN ◽  
HUI JUN YU ◽  
SI YU HE ◽  
YI NING HE ◽  
CHUAN ZHONG CHEN

The ceramic coatings were prepared on 2A12 alloy by micro-arc oxidation in CH 3 COONa – Na 2 WO 4 electrolyte system with different concentration of KOH added. The effects of KOH in this electrolyte on micromorphology, phase compositions, adhesion and corrosion resistance of the coatings were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), scratch test and electrochemistry workstation. The results show that KOH has a significant influence on the surface morphology, which can make the surface smoother. The adhesion of the coating becomes stronger with the increase of KOH in the electrolyte. The corrosion resistance of the coated specimen increases a lot compared with that of the substrate. And the lowest corrosion current density (I corr ) of the coating prepared in the electrolyte with KOH is about three orders of magnitude lower than that of the substrate.


2014 ◽  
Vol 633 ◽  
pp. 402-405
Author(s):  
Mu Qin Li ◽  
Jiang Liu ◽  
Jun Gang Li ◽  
Ding Sen Cai ◽  
Yong Hui Zhao

Ceramic coatings were fabricated on pure magnesium in silicate electrolyte system by ultrasonic micro-arc oxidation (UMAO) process, and then silica sol (CSG) and HF-CSG treatment were carried out on micro-arc oxidation coatings. The corrosion potential (Ecorr) and corrosion current density (Icorr) of the compound coatings were analyzed by electrochemical corrosion workstation. The corrosive morphology of the coatings was observed by scanning electron microscopy (SEM). Results showed that the Ecorr of the coating with CSG and HF-CSG treatment increased by 55 mV and 69 mV respectively in comparison with that of single UMAO coating, and its Icorr reduced an order of magnitude, which had enhanced the corrosion resistance.


2011 ◽  
Vol 189-193 ◽  
pp. 1248-1252 ◽  
Author(s):  
Rui Ling Jia ◽  
Hong Ping Duan ◽  
Feng Guo ◽  
Xi Wei Zhai ◽  
Ya Hong Liang

Aluminium plate was cladded to magnesium alloy plate by using the explosive welding. The bonding morphology and composition of the explosive cladding plate was inspected by SEM and EDS. There is a wave bonding at the interface between aluminum plate and magnesium alloy plate. Then ceramic coatings were directly prepared on the surface of aluminum and magnesium alloy by micro-arc oxidation (MAO) in the same solution and at the same time. The microstructure and composition of MAO coatings were studies by SEM and EDS. The corrosion and wear resistance of MAO coatings on the two sides of the clad plate were investigated by salt spray tests and friction-wear test. The results show that the MAO coating on the Al surface consists of Al, O and Si elements, while MAO coating on the Mg surface consists of Mg, O and Si elements. The corrosion resistance of MAO coating on the Al surface was better than that on Mg surface of the explosive clad plate. The MAO coatings both on the Al surface and on the Mg surface can obviously improve the wear resistance of substrate.


Author(s):  
Lida Shen ◽  
Yinhui Huang ◽  
Zongjun Tian ◽  
Guoran Hua

This paper describes an investigation of nano-Al2O3 powders reinforced ceramic coatings, which has included NiCrAl and Al2O3+13%wt.TiO2 coats pre-produced by atmosphere plasma spraying, implemented by laser sintering. Commercial NiCrAl powders were plasma sprayed onto 45 Steel substrates to give a bond coat with thickness of ∼100μm. The 600μm thick Al2O3+13%wt.TiO2 based coating was also plasma sprayed on top of the NiCrAl bond coat. With 2.5kw continuous wave CO2 laser, nano-Al2O3 ceramic powders were laser sintered on the based Coatings. The micro structure and chemical composition of the modified Al2O3+13%wt.TiO2 coatings were analyzed by such detection devices as scanning electronic microscope (SEM) and x-ray diffraction (XRD). Microhardness, wear resistance and corrosion resistance of the modified coatings were also tested and compared with that of the unmodified. The results show that the crystal grain size of Al2O3 had no obvious growth. In addition, due to the nanostructured Al2O3 ceramic phases, the coatings exhibited higher microhardness, better wear resistance and corrosion resistance than those unmodified counterparts. The complex process of plasma spraying with laser sintering as a potential effective way of the application of ceramic nano materials was also simply discussed and summarized in the end.


2010 ◽  
Vol 154-155 ◽  
pp. 1170-1177
Author(s):  
Yuan Fang Chen ◽  
Xiao Dong Peng ◽  
Jian Jun Hu ◽  
Hong Bin Xu ◽  
Chan Hao

Surface modification of 40Cr steel by high current pulsed electron beam has been investigated . The pulsed times of HCPEB was changed from 1 to 25 to prepare different specimens. Surface microstructures and section microstructures after HCPEB irradiation were detected by using metallurgical microscope, SEM and X-ray diffractometer. It is shown that crater defects were found on the surface after the irradiation of HCPEB and the density of craters will decrease with increasing pulses times. When treated by 27Kev accelerating voltage, with increasing pulse times, the particles located in surface layer were obviously refined .The surface roughness, hardness, wear properties and corrosion resistance were analyzed after irradiation of HCPEB. The wear resistance and corrosion resistance were obviously enhanced after 10 pulses treatment.


2012 ◽  
Vol 518-523 ◽  
pp. 632-636
Author(s):  
Jian Jun Xi ◽  
Jun Zhao

This paper provides the method of calculating the film pore area and comparing the density of the looser and compact layer by AC impedance, then to compare the corrosion resistance of the film by comparing the pore area and the dielectric constant. The resistance of the film decreases fellow the soaking time extending, the capacitance of the loose and compact layer increases with the soaking time extending. The capacitance of the compact layer is smaller than that of the loose layer.


Sign in / Sign up

Export Citation Format

Share Document