Effect of Material Composition on Impact Energy Absorbing Capability of Composite Laminates

2016 ◽  
Vol 715 ◽  
pp. 147-152
Author(s):  
Ryota Haruna ◽  
Takayuki Kusaka ◽  
Ryota Tanegashima ◽  
Junpei Takahashi

A novel experimental method was proposed for characterizing the energy absorbing capability of composite materials during the progressive crushing process under impact loading. A split Hopkinson pressure bars system was employed to carry out the progressive crushing tests under impact loading. The stress wave control technique was used to avoid the inhomogeneity of dynamic stress field in the specimen. The progressive crushing behavior was successfully achieved by using a coupon specimen and anti-buckling fixtures. With increasing strain rate, the absorbed energy during the crushing process slightly decreased, whereas the volume of the damaged part clearly increased regardless of material type. Consequently, the energy absorbing capability decreased with increasing loading rate. The effects of material composition, such as fiber type, matrix type and fabric pattern, on energy absorbing capability were also investigated by using the proposed method.

2018 ◽  
Vol 183 ◽  
pp. 01003
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

The behavior of aluminum Cymat foam under impact perforation loading was studied using experiments and simulations. Measurements at 40 m/s were performed with an inverse perforation setup using a Split Hopkinson Pressure Bars system. Such measurement is missing in a classical free-flying penetrator–immobile–target scheme under impact loading and makes it possible to directly compare impact the perforation force–displacement curves with the static ones. Compared with quasi-static test perforation forces obtained under the same geometry and clamping system, a significantly enhanced perforation force was found under impact loading. Numerical simulations of the perforation test were developed using LS-DYNAfinite element code to provide the local information necessary to understand the unexpected enhancement in perforation force. The shock effect was found to be responsible for enhancement of the perforation force and revealed that the honeycomb model with appropriate tensile failure criteria was more suitable for model perforation of the foam than the Deshpande and Fleck model with volumetric failure strain criteria


2013 ◽  
Vol 535-536 ◽  
pp. 72-75 ◽  
Author(s):  
Ramachandran Velmurugan ◽  
G. Balaganesan ◽  
N.K. Gupta

This paper presents various energy absorbing modes in nano composite laminates when subjected to impact loading. Composite laminates, made of 610 gsm WRM(Woven Roving Mat), are prepared by hand lay-up and compression molding technique.Nano clay is dispersed in epoxy and is used as a matrix. Clay dispersion in epoxy is varied from 1% to 5% by weight. A gas gun set up is used to impact the composite laminates with spherical nose cylindrical projectile of diameter 9.5 mm and mass 7.6g.The laminates are subjected to different velocities, which vary from below ballistic limit to above ballistic limit.The vibration response of the laminate at different impact velocities is studied. A time dependent analytical model is used to predict the projectile energy during penetration, and is used to determine the ballistic limit of the laminate. The ballistic limit obtained from experiment is validated with analytical model and good agreement is found.


2006 ◽  
Vol 134 ◽  
pp. 725-730 ◽  
Author(s):  
A. Pignon ◽  
G. Mathieu ◽  
S. Richomme ◽  
J. M. Margot ◽  
F. Delvare

2020 ◽  
pp. 78-82
Author(s):  
A.Р. Evdokimov ◽  
A.N. Gromyiko ◽  
A.A. Mironov

Analytical models of static and dynamic impact elastoplastic deformation of tubular energy-absorbing elements constituting a tubular plastic shock absorber are proposed. The developed models can be used for the calculation and design of these shock absorbers. Keywords static and dynamic elastoplastic deformation, mathematical modeling, tubular energy-absorbing element, tubular plastic shock absorber, impact loading. [email protected]


2015 ◽  
Vol 819 ◽  
pp. 411-416
Author(s):  
S.N. Fitriah ◽  
M.S. Abdul Majid ◽  
R. Daud ◽  
M. Afendi ◽  
Z.S. Nazirah

The paper discusses the crushing behavior of glass fibre reinforced epoxy (GRE) pipes under hydrothermal ageing condition. This study determines the behavior of the GRE pipes when subjected to different ageing periods and temperatures. Hydrothermal ageing has been found to cause degradation between resin and fibre interface thus causing the reduction in the strength of composite laminates. The pipes were subjected to hydrothermal condition to simulate and precipitate ageing by immersing the pipe samples in water at 80°C for 250, 500, and 1000 hours. Compression tests were carried out using Universal Testing Machine (UTM) for virgin condition and aged samples in accordance with ASTM D695 standard. The maximum force at the initial failure region is observed for each of the conditioned pipes. The results show that the strength of the matrix systems was considerably degraded due to the plasticization of the matrix system.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7298
Author(s):  
Shumeng Pang ◽  
Weijun Tao ◽  
Yingjing Liang ◽  
Shi Huan ◽  
Yijie Liu ◽  
...  

Although highly desirable, the experimental technology of the dynamic mechanical properties of materials under multiaxial impact loading is rarely explored. In this study, a true-biaxial split Hopkinson pressure bar device is developed to achieve the biaxial synchronous impact loading of a specimen. A symmetrical wedge-shaped, dual-wave bar is designed to decompose a single stress wave into two independent and symmetric stress waves that eventually form an orthogonal system and load the specimen synchronously. Furthermore, a combination of ground gaskets and lubricant is employed to eliminate the shear stress wave and separate the coupling of the shear and axial stress waves propagating in bars. Some confirmatory and applied tests are carried out, and the results show not only the feasibility of this modified device but also the dynamic mechanical characteristics of specimens under biaxial impact loading. This novel technique is readily implementable and also has good application potential in material mechanics testing.


Sign in / Sign up

Export Citation Format

Share Document