Microstructural Evolution of the Magnesium Alloy AZ31 with and without SiC Particles during Ultrasonic Melt Treatment

2016 ◽  
Vol 716 ◽  
pp. 345-351
Author(s):  
Kristina Neh ◽  
Madlen Ullmann ◽  
Rudolf Kawalla

The aim of this study is to reveal the influence of ultrasonic treatment in the molten state on microstructural evolution of the magnesium alloy AZ31 with and without the addition of SiC particles. Therefore, a heatable wedge-shaped mold for holding the magnesium melt on the required temperature was constructed with the possibility to insert an ultrasonic horn into the melt. Previously ingots of AZ31 were molten in an electrical furnace under a protective gas atmosphere. SiC particles with an average diameter of 2 μm were added to the melt. Mechanical stirring was conducted to ensure homogeneous distribution of the particles. The molten Mg was subjected to ultrasonic sound with constant frequency of 20,000 Hz and amplitude of 12.4 μm. The time of ultrasonic treatment was defined on 60 seconds. The material solidified quickly due to the cooling with water nozzles after withdrawing of the ultrasonic horn. AZ31 without SiC particles was treated under the same conditions. The resulting microstructure was observed by optical and scanning electron microscopy. Depending on resulting intensity and the effective area a refinement in grain size and also more homogeneous distribution of precipitations in the material is achieved. The resulting microstructures of AZ31 with and without SiC addition were compared and discussed.

2007 ◽  
Vol 546-549 ◽  
pp. 485-490
Author(s):  
Hai Yan Jiang ◽  
Wen Bin Ding ◽  
Xiao Qin Zeng ◽  
De Hui Li ◽  
Shou Shan Yao

Gas tungsten arc (GTA) surface modification process was used to deposit SiC particles and aluminum alloy powders on the surface of magnesium alloy AZ31. This method is an effective technique in producing a high performance composite layer. This process result notable grain refinement in the GTA surface modified composite layer. The hardness and wear resistance of the GTA surface modified composite layer are superior to that of as-received magnesium alloy AZ31. The hardness values and wear resistance of GTA surface modified composite layer depend on the GTA process parameters and the SiC particles powder concentration and distribution. The optimum processing parameters for the formation of a homogeneous crack/defect-free and grain refinement microstructure were established.


2005 ◽  
Vol 488-489 ◽  
pp. 611-614 ◽  
Author(s):  
Aiden G. Beer ◽  
Matthew R. Barnett

The microstructural evolution during compression (at 350°C and a strain rate of 0.01s-1) was examined for magnesium alloy AZ31 received in the "as-cast" condition. It was revealed that at low strains, many twins are produced and dynamically recrystallized (DRX) grains form as a necklace along pre-existing grain boundaries. At higher strains, DRX stagnates, most likely due to the accommodation of deformation in the DRX fraction of the material. It was also observed that twin boundaries act as sites for the nucleation of DRX grains. The analysis was repeated for samples pre-compressed to a strain of 0.15 at room temperature prior to the hot deformation step. The idea of these additional tests was to increase the degree of twinning and therefore the density of sites for the nucleation of DRX. It was found that statically recrystallized (SRX) grains developed at the twins during heating to the test temperature. When these samples were deformed, the peak flow stress was reduced by approximately 20% and the development of DRX was enhanced. This can be attributed to the accelerated nucleation of DRX in the refined SRX structure.


2014 ◽  
Vol 9 (2) ◽  
pp. 249-257
Author(s):  
Chuanxing Li ◽  
Yanling Zhang ◽  
Dong Chen ◽  
Guangfeng Duan ◽  
Zhenyin Liu ◽  
...  

2021 ◽  
Vol 807 ◽  
pp. 140821
Author(s):  
Kai Zhang ◽  
Zhutao Shao ◽  
Christopher S. Daniel ◽  
Mark Turski ◽  
Catalin Pruncu ◽  
...  

Author(s):  
Kenneth J. Tam ◽  
Matthew W. Vaughan ◽  
Luming Shen ◽  
Marko Knezevic ◽  
Ibrahim Karaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document