Formability and Surface Quality of Incrementally Formed Grade 1 Titanium Thin Sheets

2016 ◽  
Vol 716 ◽  
pp. 99-106 ◽  
Author(s):  
Antonio Formisano ◽  
Luca Boccarusso ◽  
Luigi Carrino ◽  
Massimo Durante ◽  
Antonio Langella ◽  
...  

The incremental forming of titanium alloy sheets combines the advantages of this advanced flexible manufacturing process, that allows to produce complex components without using dedicated tools, with the interesting properties of the material under consideration. In this study, thin sheets of grade 1 titanium were incrementally formed to evaluate their formability and surface quality by varying the tool-sheet contact conditions. Experimental tests and surface analyses highlight dependence on the contact conditions of the surface quality rather than of the formability. Moreover, they emphasize that the tool-sheet contact conditions mainly affect the repeatability of the process due to the occurrence of galling.

2021 ◽  
Author(s):  
Antonio Formisano ◽  
Antonello Astarita ◽  
Luca Boccarusso ◽  
Massimo Durante ◽  
Marco Garlasché ◽  
...  

Niobium is a ductile transition metal of growing interest for several technological applications, thanks to its intriguing characteristics, among them high melting point, moderate density, good ductility, high corrosion resistance and superconductivity. By contrast, its use is limited by some weaknesses lied to the mechanical properties, which can undermine the quality of the surfaces worked by metal forming processes. Sheets of pure Niobium can be used for the manufacture of extremely customized components and a flexible process like the incremental sheet forming fits well with this manufacturing philosophy; in fact, this technique does not require complicated tools and/or dedicated equipment and is capable to respond quickly to the market demands. The scope of this paper is to investigate the influence of the tool/sheet contact conditions on different features like the forming loads, the surface quality and the occurrence of failures, when pure Niobium rolled sheets are formed incrementally. To this aim, the simplest variant of incremental sheet forming, namely single point incremental forming, was considered by using a common fixed end forming tool with hemispherical head. The process was carried out under dry and lubricated tool/sheet contact conditions, following the indications from a preliminary campaign of wear tests conducted by a pin-on-disk apparatus. The experimental campaign highlights the strong influence of the tool/sheet contact conditions and the importance of a correct choice of them on the features investigated, in order to limit the forming forces and the risk of failure, as well as to preserve the surface quality of the components made by incremental sheet forming of Niobium.


2016 ◽  
Vol 19 (3) ◽  
Author(s):  
CRINA RADU ◽  
EUGEN HERGHELEGIU ◽  
ION CRISTEA ◽  
CAROL SCHNAKOVSZKY

<p>The aim of the current work was to analyse the influence of the process parameters (tool diameter, size of the vertical step of tool, feed rate and spindle speed) on the quality of the processed surface, expressed in terms of roughness and macrostructure in the case of parts processed by single point incremental forming. The analysis was made on A1050 aluminium metal sheets. The obtained results revealed that the process parameters influence differently the surface quality, the worst influence being exerted by the increase of the vertical step of tool. </p>


2015 ◽  
Vol 9 (1) ◽  
pp. 1025-1032
Author(s):  
Shi Pengtao ◽  
Li Yan ◽  
Yang Mingshun ◽  
Yao Zimeng

To furthermore optimize the machining parameters and improve the surface quality of the workpieces manufactured by single point incremental forming method, the formation mechanism of the sacle veins on the metal incremental froming workpieces was studied through experiment method. The influence principle of the spindle speed, the feed speed and the material of tip of tools on the length of scale veins was obtained through analyzing the experimental results and building the mathematical model among the length of scale veins were feed speed and spindle speed through measuring the roughness of surfaces and observing the appearance of the forming workpieces. The experimental results showed that, the spindle speed, the feed speed and the material of tool tips have a significant effect on the scale veins formation on the surface of forming workpieces. Therefore, an appropriate group of spindle speed and feed speed can reduce the effect of scale veins on the roughness of single point incremental forming workpieces and furthermore improve the surface quality of forming workpieces.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1228
Author(s):  
Junjie Jiang ◽  
Jianming Chen ◽  
Zhihao Ren ◽  
Zhongfa Mao ◽  
Xiangyu Ma ◽  
...  

With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (EF) had a significant influence on the quality of the lower surface. Excessive EF led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low EF easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low EF and high EF, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface.


2019 ◽  
Vol 1 (1) ◽  
pp. 417-424
Author(s):  
Agata Dudek ◽  
Andrii Goroshko

Abstract Quality of the lighting columns plays a major role in the comfort and safety of life of road users. The surface quality of the materials used in the columns is especially critical during extreme weather conditions. Road infrastructure, including street lighting, uses modern lightweight materials from the group of non-ferrous materials or composites. The materials used in the manufacturing process ensure important advantages, such as durability, electrical safety, aesthetic qualities, low maintenance costs, light weight, and easy transport and assemble. This paper presents an analysis of the quality of coatings used for street lighting columns.


Sign in / Sign up

Export Citation Format

Share Document