Burr Height as Quality Indicator in Single Shot Drilling of Stacked CFRP/Aluminium Composite

2017 ◽  
Vol 744 ◽  
pp. 327-331 ◽  
Author(s):  
M Hafiz Hassan ◽  
Jamaluddin Abdullah ◽  
Abdus Samad Mahmud ◽  
Azwan Supran

In drilling metallic parts, burr height is one of the quality indicators that is used for hole quality assessment, and burr height need to be minimized for best hole quality. This is important because the induced exit burr height usually causes serious problem for further assembly of the stack up during the riveting and fasteners installation. This paper aims to establish an appropriate choice of drill geometry and drilling parameters to achieve a minimum or eliminate the burr height formation when drilling stacked Carbon Fibre Reinforced Plastic (CFRP)/aluminium 7075 T-6 composite in a single shot drilling process. The two levels of fractional factorials method was used to determine the optimum setting that give minimum burr height and the percentage of significance for each parameter in drilling a stack up materials was further analysed. The results revealed that burr height formation for stack up materials can be minimized at 15° of helix angle, 8° of primary clearance angle, 130°of point angle, 30° of chisel edge angle at spindle speed 2600 RPM and 0.05 mm/rev. A minimum burr height of 133.62 µm was found at these optimized combinations of parameters.

2021 ◽  
Vol 5 (7) ◽  
pp. 189
Author(s):  
Muhammad Hafiz Hassan ◽  
Jamaluddin Abdullah ◽  
Gérald Franz ◽  
Chim Yi Shen ◽  
Reza Mahmoodian

Drilling two different materials in a layer, or stack-up, is being practiced widely in the aerospace industry to minimize critical dimension mismatch and error in the subsequent assembly process, but the compatibility of the drill to compensate the widely differing properties of composite is still a major challenge to the industry. In this paper, the effect of customized twist drill geometry and drilling parameters are being investigated based on the thrust force signature generated during the drilling of CFRP/Al7075-T6. Based on ANOVA, it is found that the maximum thrust force for both CFRP and Al7075-T6 are highly dependent on the feed rate. Through the analysis of maximum thrust force, supported by hole diameter error, hole surface roughness, and chip formation, it is found that the optimum tool parameters selection includes a helix angle of 30°, primary clearance angle of 6°, point angle of 130°, chisel edge angle of 30°, speed of 2600 rev/min and feed rate of 0.05 mm/rev. The optimum parameters obtained in this study are benchmarked against existing industry practice of the capability to produce higher hole quality and efficiency, which is set at 2600 rev/min for speed and 0.1 mm/rev for feed rate.


2019 ◽  
Vol 23 (1) ◽  
pp. 271-276
Author(s):  
T. Deepan Bharathi Kannan ◽  
B. Suresh Kumar ◽  
G. Rajesh Kannan ◽  
M. Umar ◽  
Mohammad Chand Khan

Abstract This work is aimed at developing relations between the pertinent variables that affect drilling process of stainless steel using artificial neural network. The experiments were conducted on vertical CNC machining centre. The parameters used were spindle speed and feed rate. The effect of machining parameters on entry burr height, exit burr height and surface roughness was experimentally evaluated for different spindle speeds and feed rates. A model was established between the drilling parameters and experimentally obtained data using ANN. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the burr height and surface roughness in drilling of stainless steel. Genetic algorithm (GA) technique was used in this work to identify the optimized drilling parameters. Confirmation test was conducted with the optimized parameters and it was found that confirmation test results were similar to that of GA-predicted output values.


2021 ◽  
Vol 11 (6) ◽  
pp. 2752
Author(s):  
Conchin Contell Asins ◽  
Volker Landersheim ◽  
Dominik Laveuve ◽  
Seiji Adachi ◽  
Michael May ◽  
...  

In order to contribute to achieving noise and emission reduction goals, Fraunhofer and Airbus deal with the development of a morphing leading edge (MLE) as a high lift device for aircraft. Within the European research program “Clean Sky 2”, a morphing leading edge with gapless chord- and camber-increase for high-lift performance was developed. The MLE is able to morph into two different aerofoils—one for cruise and one for take-off/landing, the latter increasing lift and stall angle over the former. The shape flexibility is realised by a carbon fibre reinforced plastic (CFRP) skin optimised for bending and a sliding contact at the bottom. The material is selected in terms of type, thickness, and lay-up including ply-wise fibre orientation based on numerical simulation and material tests. The MLE is driven by an internal electromechanical actuation system. Load introduction into the skin is realised by span-wise stringers, which require specific stiffness and thermal expansion properties for this task. To avoid the penetration of a bird into the front spar of the wing in case of bird strike, a bird strike protection structure is proposed and analysed. In this paper, the designed MLE including aerodynamic properties, composite skin structure, actuation system, and bird strike behaviour is described and analysed.


PAMM ◽  
2011 ◽  
Vol 11 (1) ◽  
pp. 639-640 ◽  
Author(s):  
Andy Ungethuem ◽  
Rolf Lammering

Sign in / Sign up

Export Citation Format

Share Document