Microwave Torrefaction of Moist Municipal Solid Waste (MSW) Pellets with the Addition of Char from Agricultural Residues

2017 ◽  
Vol 757 ◽  
pp. 156-160
Author(s):  
Prodpran Siritheerasas ◽  
Phichayanan Waiyanate ◽  
Hidetoshi Sekiguchi ◽  
Satoshi Kodama

An investigation of the effect of the addition of char from agricultural residues on the torrefaction of moist municipal solid waste (MSW) pellets (40 wt.% moisture) was carried out in a microwave oven (500-800 W for 4-12 minutes). Char from agricultural residues, including corncob, palm shell, straw, and bagasse, was used as the microwave absorbers to enhance the absorption of microwave irradiation. It was found that the addition of char from bagasse yielded the lowest remaining mass (or mass yield) and volatile matter (VM) content, but the highest temperature and heating value, of the torrefied MSW pellet. Moisture in the MSW pellet with or without the addition of microwave absorber was completely removed after being torrefied for 8-12 minutes. The VM contents remained in the MSW pellets with the addition of microwave absorbers were lower than that in the MSW pellet without the addition of microwave absorber. The addition of microwave absorbers led to an increase in carbon (C) content but a decrease in oxygen (O) content of the torrefied MSW pellets, compared to those of the raw MSW pellet. The heating values of the torrefied MSW pellets with the addition of microwave absorbers were equivalent to that of sub-bituminous coal, enhanced from that of the raw MSW pellet, which was lower than that of lignite.

2017 ◽  
Vol 138 ◽  
pp. 668-673
Author(s):  
Prodpran Siritheerasas ◽  
Phichayanan Waiyanate ◽  
Hidetoshi Sekiguchi ◽  
Satoshi Kodama

2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


2021 ◽  
Vol 926 (1) ◽  
pp. 012009
Author(s):  
S A C R Darmawan ◽  
A L Sihombing ◽  
D G Cendrawati

Abstract The government has regulated the use of RDF biomass for coal co-firing in power plants. This paper examines biomass (Eichhornia Crassipes and municipal solid waste) characteristics and its potential use as RDF for co-firing in CPP. The method includes the analysis of the composition, supply of raw materials, and biomass characteristics. These results will compare with the coal’s characteristics in CPP. The density of Eichhornia Crassipes in Lake Tondano was 25 kg/m2, with the wet mass of 45,350 tons. The results of the Eichhornia Crassipes sample test for parameters of moisture content, volatile matter, ash content, fix carbon and gross calorific value have a value range of 93%, 5.8-7.1%, 60.21-63.5%, 17.9-22%, 11.4% and 2681-3068 kcal/kg. Amurang CPP uses coal with 4200 kcal/kg calories as much as 1056 tons/day. The co-firing target of 5% requires 52.8 tons of biomass per day. The existing Eichhornia Crassipes biomass in Lake Tondano only supplies the CPP for 62 days. MSW typically has calorific values and moisture with Eichhornia Crassipes biomass, about 3766-4194 kcal/kg and 31.7-87.1%. The use of MSW to cover the lack of Eichhornia Crassipes will ensure the sustainability of the supply of biomass raw materials in the co-firing program at CPP.


2020 ◽  
Vol 24 (3) ◽  
pp. 112-118
Author(s):  
Dace Âriņa ◽  
Rūta Bendere ◽  
Gintaras Denafas ◽  
Jānis Kalnačs ◽  
Mait Kriipsalu

AbstractThe authors determined the morphological composition of refuse derived fuel (RDF) produced in Latvia and Lithuania by manually sorting. The parameters of RDF (moisture, net calorific value, ash content, carbon, nitrogen, hydrogen, sulphur, chlorine, metals) was determined using the EN standards. Comparing obtained results with data from literature, authors have found that the content of plastic is higher but paper and cardboard is lower than typical values. Results also show that the mean parameters for RDF can be classified with the class codes: Net heating value (3); chlorine (3); mercury (1), and responds to limits stated for 3rd class of solid recovered fuel. It is recommended to separate biological waste at source to lower moisture and ash content and increase heating value for potential fuel production from waste.


2017 ◽  
Vol 61 ◽  
pp. 78-86 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Amal El Ouinani ◽  
Abdelaziz Sahibed-Dine ◽  
...  

2020 ◽  
Vol 46 (3) ◽  
pp. 160-167
Author(s):  
Made Gunamantha

Organic fraction of municipal solid waste (OFMSW) is the largest fraction of waste generated in Indonesia. This study was meant to examine the theoretical and experimental results for potential energy recovery from OFMSW in Indonesia. Bioconversion and thermochemical approach were used theoretically. The potential energy recoveries were calculated using the empirical relationship between higher heating value (HHV) and the ultimate analysis, stoichiometric, and thermochemistry concept. The HHV and ultimate analysis of OFMSW were determined by ASTM method while the lignin content and volatile solid were adopted from previous studies. The result indicated that the thermochemical approach given the potential energy recovery is higher than others.


Sign in / Sign up

Export Citation Format

Share Document