Burning Characteristics of Azeotropic Binary Blended Fuel Pool Fire

2018 ◽  
Vol 775 ◽  
pp. 365-370 ◽  
Author(s):  
Xue Hui Wang ◽  
Tian Nian Zhou ◽  
Q.P. Chen ◽  
Jin Fei Zhao ◽  
Chao Ding ◽  
...  

A series of experiments were conducted to investigate the burning characteristics of blended fuel pool fires. The azeotropic binary mixtures blended by ethanol and n-Heptane were selected as blended fuel in experiment. The fuel temperature, fire behaviors, burning rate and flame radiation were recorded in experiments. The result show that azeotropism play an important role in the burning process, the fuel temperature was decrease and the burning rate was increased. The flame radiant fraction of azeotrope has proportional relation with the radiation faction of component.

2019 ◽  
Vol 37 (3) ◽  
pp. 236-256 ◽  
Author(s):  
Xuehui Wang ◽  
Tiannian Zhou ◽  
Qinpei Chen ◽  
Junjiang He ◽  
Zheng Zhang ◽  
...  

Liquid–vapor phase equilibrium theories are used to analyze boiling processes of blended fuel pool fires, and the results show that there are two boiling mechanisms (azeotropism and non-azeotropism) for blended fuels compared with single-component fuels. A series of pool fire experiments were conducted to investigate the combustion characteristics of blended fuel pool fires. The experimental results showed that the two boiling mechanisms have different effects on the burning process of the fuel blends. The boiling temperature and composition varied for the non-azeotropic blends during the burning process and remained steady for azeotropic blends. Furthermore, the boiling temperature of azeotropic blends is lower than that of its components and ranges from a specific temperature to the boiling point of the less volatile component. The flame radiant fraction of the azeotropic blend was also relatively constant during the burning process, whereas that of the non-azeotropic blend varied in different stages of the burning process. Heskestad’s flame height model and flame axial temperature distribution model are applicable for pool fires of azeotropic and non-azeotropic blends.


Fuel ◽  
2019 ◽  
Vol 256 ◽  
pp. 115918 ◽  
Author(s):  
Xuehui Wang ◽  
Qinpei Chen ◽  
Tiannian Zhou ◽  
Haihang Li ◽  
Chao Ding ◽  
...  

Author(s):  
S. Mohammad Javadi ◽  
Pourya Nikoueeyan ◽  
Mohammad Moghiman ◽  
M. Ebrahim Feyz

The enhancement of the flame radiation in gas fueled burners not only improves the thermal efficiency, but also can suppress the rate of NO emission due to reducing the flame temperature. In this experimental investigation, the effect of inlet gas temperature on the flame radiation intensity and the rate of NO formation are studied. To serve this aim, with increasing the temperature of inlet methane to the burner up to 310°C, the variations of CO and NO level in exhaust gases and also the exhaust gas temperature are recorded by gas analyzer device. In each case, the flame radiation intensity was also measured by a photovoltaic module. The results revealed that by increasing the inlet gas temperature up to 250°C, the NO concentration and the exhaust gases temperature are raising. But when the inlet gas temperature exceeds from 250°C and reaches to 310°C, the flame luminosity gradually increases which results in 70 percent growth in flame radiation and 10 percent drop in exhaust gas temperature. The results of the preheating of inlet air also show the same behavior.


2019 ◽  
Vol 369 ◽  
pp. 116-124 ◽  
Author(s):  
Huaxian Wan ◽  
Zihe Gao ◽  
Jie Ji ◽  
Yongming Zhang ◽  
Kaiyuan Li ◽  
...  

2011 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Wen Ming Cheng ◽  
Hui Xie ◽  
Gang Li

This paper discusses the brake specific fuel consumption and brake thermal efficiency of a diesel engine using cottonseed biodiesel blended with diesel fuel. A series of experiments were conducted for the various blends under varying load conditions at a speed of 1500 rpm and 2500 rpm and the results were compared with the neat diesel. From the results, it is found that the brake specific fuel consumption of cottonseed biodiesel is slightly higher than that of diesel fuel at different engine loads and speeds, with this increase being higher the higher the percentage of the biodiesel in the blend. And the brake thermal efficiency of cottonseed biodiesel is nearly similar to that of diesel fuel at different engine loads and speeds. From the investigation, it is concluded that cottonseed biodiesl can be directly used in diesel engines without any modifications, at least in small blending ratios.


Fuel ◽  
2018 ◽  
Vol 233 ◽  
pp. 825-833 ◽  
Author(s):  
Tiannian Zhou ◽  
Qinpei Chen ◽  
Xuehui Wang ◽  
Jinfei Zhao ◽  
Chao Ding ◽  
...  

Author(s):  
Changfa Tao ◽  
Xishi Wang ◽  
Xin Cai

In order to study the effects of low atmospheric pressure conditions on combustion characteristics of liquid pool fires, a 1.0m×1.0m×1.0m airtight steel box was constructed and used for altering the ambient pressure with a vacuum pump. Gasoline, diesel oil and n-heptane were tested as the liquid fuels. The mass burning rate, flame pulsation frequency and flame local temperature history of the small scale pool fires were experimentally determined. The results show that the mass burning rate, flame pulsation frequency decrease with the decrease of ambient pressure, while the pulsating intensity is strengthened slightly for the n-heptane flame and weakened for the gasoline flame. It is also shown that the high temperature area of the flame moves upward with the decrease of ambient pressure.


Fuel ◽  
2015 ◽  
Vol 145 ◽  
pp. 228-233 ◽  
Author(s):  
Jie Ji ◽  
Chuan Gang Fan ◽  
Ying Zhen Li ◽  
Haukur Ingason ◽  
Jin Hua Sun

Sign in / Sign up

Export Citation Format

Share Document