Thermal Deformation Behavior and Formability of High Temperature with Corrosion Resistance Alloy

2019 ◽  
Vol 794 ◽  
pp. 142-150
Author(s):  
Gyeong Uk Jeong ◽  
Jun Park ◽  
Chul Kyu Jin ◽  
Young Hoon Moon ◽  
Chung Gil Kang

The aim of present wor is, therfore, to investigated the effect of the damage value prediction equation on the formability of compression specimen and find the optimize forming condition.Although Inconel 625 alloys are excellent materials, Ni-base alloy cannot be formed at room temperature owing to limitation of formability. To improve the formability of Inconel 625, it is necessary to investigate the formability at a high temperature range.A high temperature compression test is performed with a Gleeble 3500 testing machine at various temperatures (approximately 900 1200°C) and strain rates (10/s and 30/s) to obtain high temperature deformation characteristics of Inconel 625. Furthermore, high temperature tensile tests results are used to measure elongations and reductions in the area of Inconel 625.A rigid-plastic finite element simulation is applied to the high temperature compression process to obtain the damage valueThe results of the hot deformation experiment and analysis are presented for various conditions of temperatures and strain rates, and it is expected that damage value will be used in hot forming processes such as hot extrusion and rolling process.

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 720 ◽  
Author(s):  
Gyeong Uk Jeong ◽  
Chul Kyu Jin ◽  
Hyung Yoon Seo ◽  
Chung Gil Kang

Inconel 625 alloys are widely applied for high-corrosion resistance and as high-efficiency materials in aeronautical, aerospace, chemical, nuclear, petrochemical, and marine industries. Although Inconel 625 alloys are excellent materials, they cannot be formed at room temperature owing to difficulties in processing. To improve the formability of Inconel 625, it is necessary to investigate its formability at a high-temperature range and its strain rate variation. In this study, high-temperature deformation behavior after forming was investigated. A high-temperature compression test was performed with a Gleeble 3500 testing machine at various temperatures (approximately 900–1200 °C) and strain rates (10 and 30 s−1) to obtain the high-temperature deformation characteristics of Inconel 625. Furthermore, high-temperature tensile tests were performed to measure elongations and reductions in the area of the Inconel 625 alloy. The tests focused on obtaining the flow stress data and optimal hot forging conditions under various strain rates and temperatures. The results of this research are expected to contribute to hot forming processes and to formability in hot extrusion and pilger processes.


2011 ◽  
Vol 410 ◽  
pp. 283-286
Author(s):  
P.S. Robi ◽  
Sanjib Banerjee ◽  
A. Srinivasan

High temperature deformation behavior of Al–5.9%Cu–0.5%Mg alloy and Al–5.9%Cu–0.5%Mg alloy containing 0.06 wt.% of Sn was studied by hot compression tests at various temperatures and strain rates. Addition of trace amounts of Sn into the Al–Cu–Mg alloy system resulted in a significant increase of flow stress for all conditions of temperature and strain rate. 100% and 89% of the flow stress values during hot deformation could be predicted within ± 10% deviation values for the aluminum alloys with and without Sn content, respectively, by artificial neural network (ANN) modeling. From the deformation mechanism maps and microstructural investigation, the safe process regimes for hot working of the base alloy was identified to be at (i) very low strain rate (< 0.003 s−1) at temperature < 450 °C, and (ii) high temperature (> 400 °C) with strain rate > 0.02 s−1. For the micro-alloyed alloy, it was at low strain rates (< 0.01 s-1) for the entire temperature range studied. Flow softening for both alloys was observed to be at low strain rates and was identified to be due to dynamic recrystallization (DRX). The metallurgical instability during deformation was identified due to shear band formation and/or inter-crystalline cracking.


2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


1990 ◽  
Vol 213 ◽  
Author(s):  
Donald S. Shih ◽  
Gary K. Scarr

ABSTRACTThe hot-workability of a two-phase (γ+α2) alloy, Ti-48A1-2Cr-2Nb, has been studied by conducting isothermal compression tests to 0.8 true strain over the temperature range of 975–1200°C at strain rates between 1×l0−1 and 3×10−3s−1. A deformation map showing temperature, strain rate, soundness of deformation, and isostress contours was constructed. Good workability is found from the low temperature/low strain rate regime to combinations of high temperature and either high or low strain rate. The upper-limit flow stress for good workability is between 450 and 500 MPa. Deformation induced softening occurs at all conditions. SEM and TEM examinations of the deformed specimens reveal that non-uniform deformation takes place at all strain rates, but cracking occurs mostly at high strain rates (e.g. 1×10−1s−1), especially combined with low temperatures. The cracking appears to progress primarily along γ/α2interfaces. It is thought that non-uniform deformation develops channels of shear bands, which in turn promote localized recrystallization, thus accommodating higher strains.


2015 ◽  
Vol 782 ◽  
pp. 61-70
Author(s):  
You Jing Zhang ◽  
Hong Nian Cai ◽  
Xing Wang Cheng ◽  
Shuang Zan Zhao

The high temperature deformation and fracture behavior of ultra-high strength G33 steel under high strain rate compression are investigated by means of a split Hopkinson p ressure bar. Impact tests are performed at strain rates of 1000/s and 2200/s and at temperatures ranging from 25°C to 700°C. The SEM and TEM techniques are also used to analyze the microstructure evolution of the adiabatic shear band (ASB) and fracture characteristics of the deformed specimens at high temperature. The experimental results indicate that the flow stress of G33 steel is significantly dependent on temperatures and strain rates. The flow stress of G33 steel increases with the increase of strain rates, but decreases with the increase of temperatures. The strain rate sensitivity is more pronounced at the low temperature of 25°C. In addition, G33 steel is more liable to fracture at high temperatures than at 25°C. Observations of microstructure show two well-developed symmetric parabolic adiabatic shear bands on the longitudinal cross-section of the cylindrical specimen deformed at the temperature of 700°C and at the strain rate of 2200/s. Within the ASB, the width of the fine equiaxed grain structure is about 7μm. The size of those equiaxed grains is approximately 100nm. The fracture analysis results indicate that the ASBs are the predominant deformation and the specimens fracture along adiabatic shear bands. The fracture surfaces of the deformed G33 steel specimens are characterized by two alternating zones: rough dimple zone and relatively smooth shear zone. Further observations reveal that smooth shear zones consist of severely sheared dimples.


1989 ◽  
Vol 169 ◽  
Author(s):  
J.L. Routbort ◽  
K.C. Goretta ◽  
J.P. Singh

AbstractThe steady‐state flow stress of YBa2Cu3O7‐δ containing 15 to 30 vol.% Ag has been measured in air at nearly constant compressive strain rates between 5 x 10‐6 and 1 x 10‐4 s‐1 from 830 to 900°C. Addition of Ag dramatically decreases the flow stress compared to that of the pure superconductor, but the stress exponents and the activation energy for deformation remain unchanged.


2005 ◽  
Vol 495-497 ◽  
pp. 579-584 ◽  
Author(s):  
Kazuto Okayasu ◽  
Hiroshi Fukutomi

Uniaxial compression tests were conducted on Al-3mass%Mg alloy under various temperatures and strain rates. High temperature yielding was observed at the temperatures higher than 623K. Texture examination elucidated that fiber textures are constructed in all the deformation conditions examined in this study. It was found that the kinds and intensities of texture components varied depending on deformation temperature, strain rate and the amount of strain.


Author(s):  
Krishna Rajan

Weak beam dark field microscopy has been used extensively to study deformation induced intragranular defects in materials. However as noted by Tones et al weak beam imaging is also an asset in examining intergranular defects. The localisation of strain contrast close to the defect core by weak beam imaging allows the interaction of matrix dislocations with the boundary (to form extrinsic dislocations) to be studied more easily. Also, the reduction in extinction distance with weak beam microscopy produces a higher density of extinction contours, which allows topographical discontinuities associated with long range strain fields to be more readily observed.Thus in the present study, where we were interested in interfacial phenomena during high temperature deformation processing of a cobalt base alloy (Co-Cr-Mo), weak beam imaging was used to obtain a better understanding of the role of intergranular defects.


Sign in / Sign up

Export Citation Format

Share Document