Development of a 25kN In Situ Load Stage Combining X-Ray Computed Tomography and Acoustic Emission Measurement

2019 ◽  
Vol 809 ◽  
pp. 563-568
Author(s):  
Florian Thum ◽  
Philipp Potstada ◽  
Markus G.R. Sause

Combination of material testing methods such as X-ray computed tomography with in-situ load stages allows for detailed analysis of damage formation and progression in fibre-reinforced composites. X-ray computed tomography is highly suited to volumetrically analyse the damage evolution induced by the load stage for tensile testing after subsequent load increments. Simultaneous acoustic emission monitoring allows identifying the occurrence of particular failure mechanisms and allows stopping the loading procedure for volumetric scanning. However, typical commercial designs focus on a broad range of materials and are not necessarily optimized for high load capacity at high voxel resolution or the possibility to attach acoustic emission sensors to the test sample. Accordingly, we designed a new load stage to fit larger samples up to 180 mm in length and 18 mm in width, which also allows two piezoelectric acoustic emission sensors to be directly applied on the sample. In order to test fibre reinforced laminate samples with a relevant cross-section, the support structure of the load stage is made of a carbon fibre reinforced polymer tube, which withstands a maximum load of 25 kN and still stays reasonably X-ray transparent. With an outer diameter of 27 mm, a computed tomography scan with a resolution down to 2.6 μm is still possible for these laminate cross-sections. This allows to study in detail how matrix and fibres behave under loads in laminates, which are comparable to specimen sizes by typical test standards. As example, we present results from glass fibre-reinforced epoxy samples with a [±45°]5 layup and carbon fibre-reinforced epoxy samples with a [0,90,90,0] layup.

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2569 ◽  
Author(s):  
Kaige Wu ◽  
Kaita Ito ◽  
Ippei Shinozaki ◽  
Pornthep Chivavibul ◽  
Manabu Enoki

An accurate evaluation of stress corrosion cracking (SCC) in 13Cr martensitic stainless steel (MSS) is still missing due to the lack of an in-situ insight into the process evolution and full characterization of the corrosion morphology. In this work, two main regimes involved in the SCC progression, including localized corrosion and cracking, were comparatively studied using in-situ acoustic emission (AE) monitoring and three-dimensional (3D) X-ray computed tomography (XCT) scanning. The stress corrosion tests were conducted with u-bent smooth specimens subjected to a single droplet of 1 μL 1% neutral NaCl solution. Localized corrosion and cracking evolution were controlled in tempered and quenched steel specimens, respectively. From XCT scanning, localized corrosion was featured by an irregular corrosion pit with deposited corrosion products containing cracks. The single dominant SCC crack was observed to initiate from corrosion pit and propagate with a 3D tortuous and discontinuous morphology. AE signals were detected in both cases. Correlated with in-situ observations and clustering analysis, source identification of AE signals was proposed. AE signals during localized corrosion were assessed to be mainly from cracking within the deposited corrosion products. Comparatively, hydrogen-bubble evolution, plastic deformation, and crack-branches coalescence were proposed as the AE sources of cracking evolution.


2019 ◽  
Vol 236 ◽  
pp. 128-130 ◽  
Author(s):  
Peter Wagner ◽  
Oliver Schwarzhaupt ◽  
Michael May

2018 ◽  
Vol 127 (2) ◽  
pp. 371-389 ◽  
Author(s):  
Tyler Oesch ◽  
Frank Weise ◽  
Dietmar Meinel ◽  
Christian Gollwitzer

Author(s):  
Kyuya Nakagawa ◽  
Shinri Tamiya ◽  
Shu Sakamoto ◽  
Gabsoo Do ◽  
Shinji Kono ◽  
...  

X-ray computed tomography technique was used to observe microstructure formation during freeze-drying. A specially designed vacuum freeze-drying stage was equipped at the X-ray CT stage, and the frozen and dried microstructures of dextrin solutions were successfully observed. It was confirmed that the many parts of the pore microstructures formed as a replica of the original ice microstructures, whereas some parts formed as a consequence of the dehydration dependent on the relaxation level of the glassy phases, suggesting that the post-freezing annealing is advantageous for avoiding quality loss that relates to the structural deformation of glassy matters. Keywords: freeze-drying; X-ray CT; ice microstructure; glassy state


Sign in / Sign up

Export Citation Format

Share Document