Comparison of Behaviour of Different Variants of Hydrogenated TRIP Steels at Slow Strain Rate Tests

2019 ◽  
Vol 810 ◽  
pp. 70-75
Author(s):  
Petra Váňová ◽  
Jaroslav Sojka ◽  
Kateřina Konečná ◽  
Taťána Radkovská

The paper describes effect of hydrogen on mechanical properties and fracture characteristics of two types of C-Mn-Si TRIP steel; laboratory prepared steel TRIP 800 and commercially manufactured steel TRIP 780. TRIP steels are very promising materials thanks to their combination of a very good strength and toughness. However, these steels can be embrittled by hydrogen during technological operations related to galvanizing. That is why the knowledge of effects of hydrogen on the properties and fracture characteristics of the TRIP steels is of particular importance. In the presented study, effects of hydrogen were studied by tensile tests after electrolytical hydrogen charging. Electrolytical hydrogen charging was performed in 0.05 M solution of sulfuric acid with addition of potassium thiocyanate to promote hydrogen absorption. Hydrogen provoked embrittlement in both steel variants and changed their fracture micromechanism. Hydrogen embrittlement manifested itself mainly by a loss of plasticity. Index of hydrogen embrittlement, expressed on the basic of a relative drop of elongation to fracture, reached values about 77 % for the steel variant TRIP 800, resp. 83 % for the steel variant TRIP 780. No significant difference was observed between two steel variants studied. Concerning fractographic characteristics, steels containing hydrogen displayed quasi-cleavage fracture mostly on the edges of the sample and around elongated non-metallic inclusions.

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2360 ◽  
Author(s):  
Young Jin Kwon ◽  
Riccardo Casati ◽  
Mauro Coduri ◽  
Maurizio Vedani ◽  
Chong Soo Lee

A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m−2 and 50 A m−2 for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy. After tensile tests, uncharged maraging samples showed fracture surfaces with dimples. Conversely, in H-charged alloys, quasi-cleavage mode fractures occurred. A lower concentration of trapped hydrogen atoms and higher elongation at fracture were measured in the H-charged samples that were subjected to solution treatment prior to hydrogen charging, compared to the as-built counterparts. Isothermal aging treatment performed at 460 °C for 8 h before hydrogen charging increased the concentration of trapped hydrogen, giving rise to higher hydrogen embrittlement susceptibility.


CORROSION ◽  
1984 ◽  
Vol 40 (4) ◽  
pp. 146-151 ◽  
Author(s):  
G. T. Murray ◽  
H. H. Honegger ◽  
T. Mousel

Abstract The susceptibility of precipitation hardening 13-8 Mo stainless steel to hydrogen embrittlement (HE) was measured by both post hydrogen charging tensile tests and by time to failure tests while being subjected to hydrogen charging and a static stress below the yield stress. In the former, it was found that the ductility was decreased substantially after only 30 min charging time. The strength was markedly reduced after 2 h charging time. In the delayed failure tests, it was found that a localized cold worked surface condition promoted crack formation.


2011 ◽  
Vol 197-198 ◽  
pp. 1443-1446
Author(s):  
Da Lei Zhang ◽  
Yan Li ◽  
You Hai Jin ◽  
Xiao Tang

Hydrogen permeation and embrittlement behavior of hot-dip galvanized steels in wet-dry cyclic simulated marine atmospheric environment was investigated by hydrogen permeation current measurement using modified Devanathan-Stachurski cell, slow strain rate tensile test and scanning electron microscopy technique. It was found that hydrogen absorption was accelerated in wet-dry cyclic environment. On the other hand, hydrogen absorption and permeation reduced the percentage elongation after fracture of galvanized steel specimens; meanwhile, the fracture characteristics of samples fringe occurred some lacerated phenomena, i.e., galvanized steels show a higher susceptivity of hydrogen embrittlement when exposed to wet-dry cyclic marine atmospheric environment.


2011 ◽  
Vol 197-198 ◽  
pp. 1617-1620
Author(s):  
Da Lei Zhang ◽  
You Hai Jin ◽  
Yan Li ◽  
Xiao Tang

Hydrogen permeation and embrittlement behavior of hot-dip galvanized steels with different sulphite sediment on surface exposed to stimulant marine atmospheric environment was investigated by hydrogen permeation current measurement using modified Devanathan-Stachurski cell, slow strain rate tensile test and scanning electron microscopy technique. The results indicated that hydrogen permeation curves were increasing along with the sediment rising gradually. On the other hand, it was found that hydrogen absorption was accelerated by the cathodic protection of scratched steel surface afforded by zinc coating. Hydrogen absorption and permeation reduced the percentage elongation after fracture of galvanized steel specimens; meanwhile, the fracture characteristics of samples fringe occurred some lacerated phenomena, i.e., galvanized steels show a higher susceptivity of hydrogen embrittlement when exposed to marine atmospheric environment with sulphite.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2575 ◽  
Author(s):  
Qu ◽  
Feng ◽  
An ◽  
Bi ◽  
Du ◽  
...  

Herein, the hydrogen embrittlement of a heat-affected zone (HAZ) was examined using slow strain rate tension in situ hydrogen charging. The influence of hydrogen on the crack path of the HAZ sample surfaces was determined using electron back scatter diffraction analysis. The hydrogen embrittlement susceptibility of the base metal and the HAZ samples increased with increasing current density. The HAZ samples have lower resistance to hydrogen embrittlement than the base metal samples in the same current density. Brittle circumferential cracks located at the HAZ sample surfaces were perpendicular to the loading direction, and the crack propagation path indicated that five or more cracks may join together to form a longer crack. The fracture morphologies were found to be a mixture of intergranular and transgranular fractures. Hydrogen blisters were observed on the HAZ sample surfaces after conducting tensile tests at a current density of 40 mA/cm2, leading to a fracture in the elastic deformation stage.


1985 ◽  
Vol 107 (4) ◽  
pp. 343-345 ◽  
Author(s):  
T. S. Sudarshan ◽  
N. C. Pruitt ◽  
M. R. Louthan ◽  
T. A. Place

Dual phase steels are used in many applications for which electroplating is required. Hydrogen absorption and consequent loss of strength and ductility is therefore possible. Tensile tests and subsequent fractographic analysis of charged and uncharged specimens of a dual phase steel showed that hydrogen absorption resulted in deterioration of tensile properties. The deterioration was attributed to weakening of interfaces between ferrite and other constituents.


2013 ◽  
Vol 51 (11) ◽  
pp. 813-820
Author(s):  
Chi-Eun Sung ◽  
Hyeon-Jee Jeon ◽  
Jin-Kyung Lee ◽  
In-Soo Son ◽  
Sang-Pill Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document