Design of Injection Mold from Plastic Material

2020 ◽  
Vol 847 ◽  
pp. 75-80
Author(s):  
Zdenek Chval ◽  
Karel Raz ◽  
Frantisek Sedlacek

This paper deals with the use of plastics for making injection molds. Mold production times reduced by 90% and costs cut by up to 75% are some of the benefits of prototype molds from plastic materials. Today, materials with melt temperatures above 300 °C are used for plastic molds. They include ABS, PE, PP and PA. In this study, testing of high-temperature resin from Formlabs was performed. Compression and tensile test data are compared with the datasheet values and with virtual simulations. The tests were carried out at different temperatures. Based on their results, one can identify a suitable molding process with molds from this material.

2021 ◽  
Vol 183 ◽  
pp. 106724
Author(s):  
Won-Hee Kang ◽  
Stephen J. Hicks ◽  
Brian Uy ◽  
Farhad Aslani

2014 ◽  
Vol 1039 ◽  
pp. 107-111
Author(s):  
Yang Chen ◽  
Gui Qin Li ◽  
Bin Ruan ◽  
Xiao Yuan ◽  
Hong Bo Li

The mechanical behavior of plastic material is dramatically sensitive to temperature. An method is proposed to predict the mechanical behavior of plastics for cars, ranging from low-temperature low temperature ≤-40°C to high temperature ≥80°C. It dominates the behavior of plastic material based on improved constitutive model in which the parameters adjusted by a series of tests under different temperatures. The method is validated with test and establishes the basis for research and development of plastic parts for automobile as well.


Author(s):  
Shahrokh Zeinali-Davarani ◽  
Ming-Jay Chow ◽  
Raphaël Turcotte ◽  
Katherine Yanhang Zhang

The passive mechanical response of arteries is believed to be mainly dominated by elastin and collagen fibers. Many arterial diseases are accompanied by significant changes in quantity and as well as the microstructure of these constituents due to the mechanical and biological adaptive processes. In this study we focus on the biaxial tensile test data of elastase-treated porcine aortic tissues [1]. We study the mechanical behavior of aortic tissues under gradual elastin degradation through constitutive modeling and associate the mechanical response with the microstructure of collagen observed in the microscopic images of fresh and digested tissues.


2009 ◽  
Vol 24 (3) ◽  
pp. 1245-1257 ◽  
Author(s):  
Jianjun Wang ◽  
Timothy C. Ovaert

Nanoindentation is a widely accepted test method for materials characterization. On account of the complexity of contact deformation behavior, design of parametric constitutive models and determination of the unknown parameters is challenging. To address the need for identification of mechanical properties of viscoelastic/plastic materials from nanoindentation data, a combined numerical finite element/optimization-based indentation modeling tool was developed, fully self-contained, and capable of running on a PC as a stand-alone executable program. The approach uses inverse engineering and formulates the material characterization task as an optimization problem. The model development consists of finite element formulation, viscoelastic/plastic material models, heuristic estimation to obtain initial solution boundaries, and a gradient-based optimization algorithm for fast convergence to extract mechanical properties from the test data. A four-parameter viscoelastic/plastic model is presented, then a simplified three-parameter model with more rapid convergence. The end result is a versatile tool for indentation simulation and mechanical property analysis.


2011 ◽  
Vol 228-229 ◽  
pp. 303-308
Author(s):  
Bin Jia ◽  
Zheng Liang Li ◽  
Jun Lin Tao ◽  
Chun Tao Zhang

SPHB tests of concrete under different temperatures and various loading conditions are completed, and high-temperature dynamical behavior of concrete is obtained. Dynamical mechanical behavior of concrete with high temperature is affected by not only the strain rate effect, but also the high temperature weakening effect, and the strain rate hardening effect is coupled with high temperature weakening effect, but the latter has greater influence. Concrete failure evolution is described on basis of the damage factor, the intercoupling strain rate hardening effect and temperature weakening effect are simply set as mutually independent factors, each parameter is respectively fitted with test data, finally, concrete constitutive equation under high-temperature dynamical conditions is established, and comparative analysis with test data are conducted, indicating good coincidence with test results.


1982 ◽  
Vol 10 (6) ◽  
pp. 263 ◽  
Author(s):  
R Horstman ◽  
KA Peters ◽  
RL Meltzer ◽  
M Bruce Vieth ◽  
R Papirno

2000 ◽  
Vol 277 (2-3) ◽  
pp. 263-273 ◽  
Author(s):  
Thak Sang Byun ◽  
Seok Hun Kim ◽  
Bong Sang Lee ◽  
In Sup Kim ◽  
Jun Hwa Hong

Sign in / Sign up

Export Citation Format

Share Document