Monitoring of Extracellular Matrix Protein Conformations in the Presence of Biomimetic Bone Tissue Regeneration Scaffolds

2020 ◽  
Vol 865 ◽  
pp. 43-47
Author(s):  
Rodriguez Barroso ◽  
Lanzagorta Garcia ◽  
Farah Alwani Azaman ◽  
Declan M. Devine ◽  
Mark Lynch ◽  
...  

Tissue scaffolds can be designed to mimic the native extracellular matrix (ECM), making them attractive for the development for a range of regenerative medicine applications. The macromolecules present in the ECM are critical for the provision of structural support to surrounding cells and signalling cues for the modulation of diverse processes including cell migration, proliferation and healing activation. Here, conformational and transitional behaviour of the ubiquitous ECM protein, fibronectin (Fn), in the presence of bone tissue regeneration scaffolds and living C2C12 myoblast cells is reported. Spectral monitoring of Fn functionalised high plasmonic resonance responsive gold-edge-coated triangular silver nanoplates (AuTSNP) is used to distinguish between compact and extended fibronectin conformations. Large spectral red shifts of ~20 to ~59 nm indicate Fn unfolding and fibril formation on incubation with C2C12 cells. The label-free nature, excellent sensitivity and straightforward application of the AuTSNP within cellular environments presents them as a powerful new tool to signature protein conformational activity in living cells and monitor essential protein activity for the assisted development of improved tissue scaffolds promoting enhanced tissue repair.

Biomaterials ◽  
2015 ◽  
Vol 37 ◽  
pp. 230-241 ◽  
Author(s):  
Falguni Pati ◽  
Tae-Ha Song ◽  
Girdhari Rijal ◽  
Jinah Jang ◽  
Sung Won Kim ◽  
...  

2018 ◽  
Vol 36 ◽  
pp. 69-80 ◽  
Author(s):  
T Onishi ◽  
◽  
T Shimizu ◽  
M Akahane ◽  
S Omokawa ◽  
...  

Author(s):  
Na Li ◽  
Rui Guo ◽  
Zhenyu Jason Zhang

Unlike the conventional techniques used to construct a tissue scaffolding, three-dimensional (3D) bioprinting technology enables fabrication of a porous structure with complex and diverse geometries, which facilitate evenly distributed cells and orderly release of signal factors. To date, a range of cell-laden materials, such as natural or synthetic polymers, have been deployed by the 3D bioprinting technique to construct the scaffolding systems and regenerate substitutes for the natural extracellular matrix (ECM). Four-dimensional (4D) bioprinting technology has attracted much attention lately because it aims to accommodate the dynamic structural and functional transformations of scaffolds. However, there remain challenges to meet the technical requirements in terms of suitable processability of the bioink formulations, desired mechanical properties of the hydrogel implants, and cell-guided functionality of the biomaterials. Recent bioprinting techniques are reviewed in this article, discussing strategies for hydrogel-based bioinks to mimic native bone tissue-like extracellular matrix environment, including properties of bioink formulations required for bioprinting, structure requirements, and preparation of tough hydrogel scaffolds. Stimulus mechanisms that are commonly used to trigger the dynamic structural and functional transformations of the scaffold are analyzed. At the end, we highlighted the current challenges and possible future avenues of smart hydrogel-based bioink/scaffolds for bone tissue regeneration.


2007 ◽  
Vol 177 (4S) ◽  
pp. 421-422
Author(s):  
Ganka Nikolova ◽  
Christian O. Twiss ◽  
Hane Lee ◽  
Nelson Stanley ◽  
Janet Sinsheimer ◽  
...  

2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document