Research on Interfacial Diffusion Reliability Model of Thin Film Thermocouple

2021 ◽  
Vol 881 ◽  
pp. 77-85
Author(s):  
Dong Yang Lei ◽  
Yu Feng Sun ◽  
Yu Qing Xue ◽  
Guang Yan Zhao

Thin film thermocouple (TFTC) is widely used in high temperature measurement, which is of short response time, less heat residual and integrated structure. Due to the ultra-thin structure of TFTC, the interfacial diffusion has a great influence on its reliability when exposed to high temperature environment, which leads to its performance degradation. Taking thermocouple on the turbine blade as research object, the parallel diffusion model of multilayer thermocouple is proposed based on Fick’s law. The reliability model of the protective layer, the sensitive layer and the insulating layer are established in the basis of the parallel diffusion model. According to the logical correlation among the multilayer films of TFTC, the TTF model of TFTC is given. Finally, an example of reliability model based on multilayer diffusion is simulated by Monte Carlo method, which demonstrates the feasibility of the method and model.

2015 ◽  
Vol 65 (5) ◽  
pp. 385 ◽  
Author(s):  
Manoj Kumar Sonker ◽  
M. L. Dewal

<p>Thermocouples have been extensively used for the measurement of temperature since the advent of seebeck effect. Numerous sensors have been developed for temperature measurement, yet measurement of high temperature flowing fluid has been a challenging task. For the measurement of static temperature the measuring device should travel with the fluid at the same speed without disturbing the flow, which is quite unrealistic. So indirect determination of static temperature of flowing fluid is done by using thermocouple exposed into the flowing fluid. Other sensors available for high temperature measurement may lead to problems like resistance in the flow path of fluid which changes the structural dynamics. Thin film thermocouple (TFTC) based on W-W26Re for super high temperature measurement has been investigated which can be used in missiles for surface temperature measurement of nozzle and rocket interior surface. TFTC does not cause disruption in the flow path with maintaining structural integrity. The W-W26Re thermocouple offers advantage of higher seebeck coefficient at high temperature i.e. above 750 K, and usability in vacuum, inert and hydrogen atmosphere. Zirconia Fiber has been proposed as insulation protection material over thermocouple. Modelling and simulation of the TFTC for the temperature range 300 K - 2900 K has been presented. FEA model using PDE has been presented to implement heat equation, current balance  quation, Gauss theorem and Neumann boundary condition. The expected voltage production on exposed temperature gradient has been studied.</p>


2020 ◽  
Vol 91 (7) ◽  
pp. 074901
Author(s):  
Bian Tian ◽  
Yan Liu ◽  
Zhongkai Zhang ◽  
Libo Zhao ◽  
Zhaojun Liu ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 2068-2071 ◽  
Author(s):  
Hang Guo ◽  
Jun Ying Jiang ◽  
Jia Xing Liu ◽  
Zhi Hua Nie ◽  
Fang Ye ◽  
...  

Thin film thermocouples (TFTCs) have vast vistas owing to their advantages, such as thin junction, small volume, fast response rate, high sensitivity and so on. In this investigation, a transient temperature sensor of TFTCs was fabricated to measure the surface transient temperature by vacuum coating technology. Silicon dioxide was selected as insulating substrate, the overall dimension of which was 8 mm long, 8 mm wide, and 0.1 mm thick. Two different metal layers were sandwiched between silicon dioxide 2 insulating substrate and silicon dioxide protective layer: cuprum and nickel films, which were 0.08 μm thick. TFTCs consist of 13 Cu-Ni junctions, which are connected in series. The whole TFTCs area is 4.6mm × 4.6 mm. The aggregate thickness of the transient temperature sensor is 0.17 μm. To protect Cu and Ni films, a silicon dioxide layer thickness of 0.01 μm was evaporated on metal layers excluding terminal points. This research carried out static and dynamic calibration to TFTCs. The Seebeck coefficient of the thin film thermocouple is 0.83843 μV/°C. The dynamic performance of TFTCs exhibited dynamic behavior corresponding to the heat flux change on the surface of thin film thermocouple.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3294
Author(s):  
Daniel Klaas ◽  
Rico Ottermann ◽  
Folke Dencker ◽  
Marc Christopher Wurz

New sensor and sensor manufacturing technologies are identified as a key factor for a successful digitalisation and are therefore economically important for manufacturers and industry. To address various requirements, a new sputter coating system has been invented at the Institute of Micro Production Technology. It enables the deposition of sensor systems directly onto technical surfaces. Compared to commercially available systems, it has no spatial limitations concerning the maximum coatable component size. Moreover, it enables a simultaneous structuring of deposited layers. Within this paper, characterisation techniques, results and challenges concerning directly deposited thin film strain gauges with the new sputter coating system are presented. Constantan (CuNiMn 54/45/1) and NiCr 80/20 are used as sensor materials. The initial resistance, temperature coefficient of resistance and gauge factor/k-factor of quarter-bridge strain gauges are characterised. The influence of a protective layer on sensor behaviour and layer adhesion is investigated as well. Moreover, the temperature compensation quality of directly deposited half-bridge strain gauges is evaluated, optimised with an external trimming technology and benchmarked against commercial strain gauges. Finally, the suitability for high-temperature strain measurement is investigated. Results show a maximum operation temperature of at least 400 °C, which is above the current state-of-the-art of commercial foil-based metal strain gauges.


2020 ◽  
Vol 20 (18) ◽  
pp. 10444-10452
Author(s):  
Xiaoli Fu ◽  
Qiyu Lin ◽  
Yongqing Peng ◽  
Jianhua Liu ◽  
Xiaofei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document