Nanoemulsions Drug Delivery System: Preparations Techniques In Vitro Characterization and Pharmaceutical Application

2021 ◽  
Vol 886 ◽  
pp. 203-210
Author(s):  
Rafid A. Rasool Alobaidy ◽  
Nawal A. Rajab ◽  
Adawiya J. Haider

Nano-emulsions are a novel drug delivery system, in which mix two immiscible liquids, normally oil and water with the addition a proper surfactant and co-surfactant to obtain a single uniform phase, in many cases must be used more than one surfactant to improve the stability of nanoemulsion, in this survey consideration is focused to provide brief information about the formulation, a strategy of preparation, characterization procedure, evaluation parameter as particle size, polydispersity, drug content, zeta potential, and different application of nanoemulsion, it is thermodynamically unsteady colloidal dispersion systems having an average droplet size which ranges from 10 to 200 nm, the decrease in a bead size to nanoscale leads to alter in physical properties such as uncommon elastic behavior and optical transparency and get better bioavailability and good targeting. The formulation of O/W nanoemulsion where hydrophobic drugs are dissolved within the oil phase consider the common approach of nanoemulsion utilization in biomedical application. The essential thought behind these formulations is that nanodroplets act as a medium to transport hydrophobic drugs. The advantage of nanodroplets when compared to the bigger droplet sized emulsions is the upgraded stability and progressed pharmacological activity nanoemulsions have broad applications in numerous areas other than pharmaceutics, like in cosmetics, nourishment and other applications owing to many benefits of nanoemulsion as higher stability versus coalescence, lack of harmfulness or irritant effect, minimal viscosity, good appearance, as well as the flexibility of formulation like liquids, creams in addition to sprays.

Author(s):  
Neeraj Singh ◽  
Shweta Rai ◽  
Sankha Bhattacharya

Background: About two-third of new drugs reveal low solubility in water due to that; it becomes difficult for formulation scientists to develop oral solid dosage forms with a pharmaceutically acceptable range of therapeutic activity. In such cases, S-SMEEDS are the best carrier used universally for the delivery of hydrophobic drugs. SEDDS were also used, but due to its limitations, S-SMEDDS used widely. These are the isotropic mixtures of oils, co-solvents, and surfactants. S-SMEDDS are physically stable, easy to manufacture, easy to fill in gelatin capsules as well as improves the drug bioavailability by releasing the drug in the emulsion form to the gastrointestinal tract and make smooth absorption of the drug through the intestinal lymphatic pathway. Methods: We took on the various literature search related to our review, including the peer-reviewed research, and provided a conceptual framework to that. Standard tools are used for making the figures of the paper, and various search engines are used for the literature exploration.In this review article the author discussed the importance of S-SMEDDS, selection criteria for excipients, pseudo-ternary diagram, mechanism of action of S-SMEDDS, solidification techniques used for S-SMEDDS, Characterization of SEDDS and S-SMEDDS including Stability Evaluation of both and future prospect concluded through recent findings on S-SMEDDS on Cancer as well as a neoteric patent on S-SMEDDS Results: Many research papers discussed in this review article, from which it was found that the ternary phase diagram is the most crucial part of developing the SMEDDS. From the various research findings, it was found that the excipient selection is the essential step which decides the strong therapeutic effect of the formulation. The significant outcome related to solid-SMEDDS is less the globule size, higher would be the bioavailability. The adsorption of a solid carrier method is the most widely used method for the preparation of solid-SMEDDS. After review of many patents, it is observed that the solid-SMEDDS have a strong potential for targeting and treatment of a different type of Cancer due to their property to enhance permeation and increased bioavailability. Conclusion: S-SMEEDS are more acceptable pharmaceutically as compare to SEDDS due to various advantages over SEDDS viz stability issue is prevalent with SEDDS. A number of researchers had formulated S-SMEDDS of poorly soluble drugs and founded S-SMEDDS as prospective for the delivery of hydrophobic drugs for the treatment of Cancer. S-SMEEDS are grabbing attention, and the patentability on S-SMEDDS is unavoidable, these prove that S-SMEEDS are widely accepted carriers. These are used universally for the delivery of the hydrophilic drugs and anticancer drugs as it releases the drug to the gastrointestinal tract and enhances the systemic absorption. Abstract: Majority of active pharmaceutical ingredients (API) shows poor aqueous solubility, due to that drug delivery of the API to the systemic circulation becomes difficult as it has low bioavailability. The bioavailability of the hydrophobic drugs can be improved by the Self-emulsifying drug delivery system (SEDDS) but due to its various limitations, solid self-micro emulsifying drug delivery systems (S-SMEDDS) are used due to its advantages over SEDDS. S-SMEDDS plays a vital role in improving the low bioavailability of poorly aqueous soluble drugs. Hydrophobic drugs can be easily loaded in these systems and release the drug to the gastrointestinal tract in the form of fine emulsion results to In-situ solubilisation of the drug. In this review article the author's gives an overview of the solid SMEDSS along with the solidification techniques and an update on recent research and patents filled for Solid SMEDDS.


2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


2003 ◽  
Vol 92 (12) ◽  
pp. 2411-2418 ◽  
Author(s):  
Neslihan Gursoy ◽  
Jean‐Sebastien Garrigue ◽  
Alain Razafindratsita ◽  
Gregory Lambert ◽  
Simon Benita ◽  
...  

2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

Sign in / Sign up

Export Citation Format

Share Document