The Amplitude Calculation Massive Foundations of Machines Taking into Account the Damage

2020 ◽  
Vol 1006 ◽  
pp. 123-129
Author(s):  
Olena V. Mykhailovska ◽  
Mykola L. Zotsenko

The known methods of calculation of oscillation amplitudes of massive foundations of machines taking into account damage are analyzed in the article. It is established that the method set out in the building codes allows to determine the amplitudes of the foundation oscillations at any point of the foundation, approximately enough. This technique does not take into account the interaction with the soil of the deepened foundations, but takes into account only the physical and mechanical characteristics under the sole of the foundation. The authors propose a finite element method (FEM) calculation using the Plaxis 7 software package installed on a personal computer and a vibrometer. The result is the oscillation amplitude of the massive foundation. The presence of cracks and damage increases the magnitude of the oscillation amplitudes from the dynamic impact. If you make timely planned repairs to the foundations, the amplitude of the oscillations can be reduced.

2021 ◽  
Vol 316 ◽  
pp. 917-922
Author(s):  
Irina Volokitina ◽  
Evgeniy Panin ◽  
Kanat Tolubaev

In this paper the methods of mechanical testing of metal and the possibility of their implementation, using mathematical modeling by the finite element method in Deform software package, are considered. As the studied parameters, both the strength indicators (yield strength, tensile strength, Brinel micro-hardness), and the plasticity indicator (the number of kinks before the crack is formed), were studied. The values obtained in the simulation have a very high convergence with the real data.


2017 ◽  
Vol 39 (2) ◽  
pp. 149-164
Author(s):  
Nguyen Xuan Toan ◽  
Tran Van Duc

In this study, the finite element method (FEM) is used to investigate the dynamic response of continuous girder bridge due to moving three-axle vehicle . Vertical reaction forces of axles that change with time make bending vibration of girder significantly  increase. The braking in the first span is able to create response in other spans. In addition, the dynamic impact factors are investigated by both FEM and experiment for Hoa Xuan bridge. The results of this study provide an improved understanding of the bridge dynamic behavior and can be used as additional references for bridge codes by practicing engineers.


2021 ◽  
pp. 49-54
Author(s):  
V.A. Ogorodov

Different ways of fixing of stepped thin-walled cylinders during honing are analyzed. The conditions for increasing the accuracy of hole machining are determined on the basis of unevenness of cylinder deformations from clamping forces and radial forces simulating cutting forces. The studies used the finite element method and the DEFORM-3D V6.1 software package. Keywords: honing, stepped thin-walled cylinder, hole, accuracy, fixing method, deformation, unevenness, DEFORM-3D V6.1 software package. [email protected]


2019 ◽  
Vol 135 ◽  
pp. 01037
Author(s):  
Vladimir Andreev ◽  
Lyudmila Polyakova

The purpose of the work is to compare two calculation methods using the example of solving the axisymmetric thermoelasticity problem. The calculation of a thick-walled cylindrical three-layer shell on the temperature effect was carried out by the numerical-analytical method and the finite element method implemented in the LIRA-CAD software package. In the calculation, a piecewise linear inhomogeneity of the shell due to its three-layer structure and continuous inhomogeneity caused by the influence of a stationary temperature field is taken into account. The numerical-analytical method of calculation involves the derivation of a resolving differential equation, which is solved by the sweep method, it is possible to take into account the nonlinear nature of the deformation of the material using the method of successive approximations. To solve this problem by the finite element method, a similar computational model of the shell was constructed in the LIRA-CAD software package. The solution of the problem of thermoelasticity for an infinite cylinder (under conditions of a plane deformed state) and for a cylinder of finite length with free ends is given. Comparison of the calculation results is carried out according to the obtained values of ring stresses.


2014 ◽  
Vol 488-489 ◽  
pp. 561-564
Author(s):  
Dong Yu Ji

Using finite element method and D-value method, this paper analyzes on force calculation of the special-shaped column frame structure,and obtains shear force and displacement value of the special-shaped column frame structure under the lateral earthquake action. The two methods of calculation results are compared and analyzed, and the results showed that finite element method is an effective method of calculating special-shaped column frame structure.


2020 ◽  
Vol 164 ◽  
pp. 02003
Author(s):  
Viacheslav Chepurnenko ◽  
Batyr Yazyev ◽  
Ludmila Dubovitskaya

The article presents solutions to the problem of rod buckling, taking into account creep effects. Trigonometric series, the finite difference method in combination with the programming language MATLAB, as well as the finite element method in the ANSYS software package were used in the solutions. The behavior of the rods is researched for two types of relations between strain and stress during creep, with strains in an explicit and implicit form. When solving, the criterion of initial imperfections with their different values is used, as well as the tangential-modular theory. The results obtained for the two creep models are compared. The conclusion is made about the accuracy of the results of calculations in ANSYS with the presence of a combination of geometric and physical nonlinearity for various creep models.


2013 ◽  
Vol 394 ◽  
pp. 385-389
Author(s):  
Dongy Yu Ji

Through analyzing bitumen residuum concrete inclined wall rockfill dam structures mechanical characteristics in construction process and operational process, this paper adopts finite element method to carry out structural analysis for bitumen residuum concrete inclined wall rockfill dam of Fengguo reservoir. Deducing distribution law of the dams stress and displacement in construction process and operational process. Analysis results show that, bitumen residuum concrete inclined wall rockfill dam construction of Fengguo reservoir is reasonable, it meets the requirements for design.


2013 ◽  
Vol 394 ◽  
pp. 332-335
Author(s):  
Min Tan

Through analyzing dry masonry overflow dam structures mechanical characteristics in construction process and operational process, this paper adopts finite element method to carry out simulation analysis for dry masonry overflow dam of Daxilong reservoir. Deducing distribution law of the dams stress and displacement in construction process and operational process. Analysis results show that, dry masonry overflow dam of Daxilong reservoir construction is reasonable, it meets the requirements for design.


Sign in / Sign up

Export Citation Format

Share Document