scholarly journals Features of compressed rods calculations with account of initial imperfections and creep effects

2020 ◽  
Vol 164 ◽  
pp. 02003
Author(s):  
Viacheslav Chepurnenko ◽  
Batyr Yazyev ◽  
Ludmila Dubovitskaya

The article presents solutions to the problem of rod buckling, taking into account creep effects. Trigonometric series, the finite difference method in combination with the programming language MATLAB, as well as the finite element method in the ANSYS software package were used in the solutions. The behavior of the rods is researched for two types of relations between strain and stress during creep, with strains in an explicit and implicit form. When solving, the criterion of initial imperfections with their different values is used, as well as the tangential-modular theory. The results obtained for the two creep models are compared. The conclusion is made about the accuracy of the results of calculations in ANSYS with the presence of a combination of geometric and physical nonlinearity for various creep models.

2021 ◽  
Author(s):  
Илья Евгеньевич Харламов ◽  
Сергей Ильдусович Валеев

Методом конечных элементов с помощью программного комплекса ANSYS проведен анализ влияния дефекта основного металла типа «расслоение», в зависимости от глубины его залегания, на возможную безопасную эксплуатацию технологического оборудования. По результатам исследований установлено, что расслоение не оказывает существенного влияния на несущую способность оборудования, пока оно локально и не распространяется. The analysis of the influence of a base metal defect of the "stratification" type, depending on the depth of its occurrence, on the possible safe operation of technological equipment was carried out by the finite element method using the ANSYS software package. According to the results of the research, it was found that the stratification does not significantly affect the load-bearing capacity of the equipment, as long as it is local and does not spread.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2021 ◽  
pp. 49-54
Author(s):  
V.A. Ogorodov

Different ways of fixing of stepped thin-walled cylinders during honing are analyzed. The conditions for increasing the accuracy of hole machining are determined on the basis of unevenness of cylinder deformations from clamping forces and radial forces simulating cutting forces. The studies used the finite element method and the DEFORM-3D V6.1 software package. Keywords: honing, stepped thin-walled cylinder, hole, accuracy, fixing method, deformation, unevenness, DEFORM-3D V6.1 software package. [email protected]


2019 ◽  
Vol 135 ◽  
pp. 01037
Author(s):  
Vladimir Andreev ◽  
Lyudmila Polyakova

The purpose of the work is to compare two calculation methods using the example of solving the axisymmetric thermoelasticity problem. The calculation of a thick-walled cylindrical three-layer shell on the temperature effect was carried out by the numerical-analytical method and the finite element method implemented in the LIRA-CAD software package. In the calculation, a piecewise linear inhomogeneity of the shell due to its three-layer structure and continuous inhomogeneity caused by the influence of a stationary temperature field is taken into account. The numerical-analytical method of calculation involves the derivation of a resolving differential equation, which is solved by the sweep method, it is possible to take into account the nonlinear nature of the deformation of the material using the method of successive approximations. To solve this problem by the finite element method, a similar computational model of the shell was constructed in the LIRA-CAD software package. The solution of the problem of thermoelasticity for an infinite cylinder (under conditions of a plane deformed state) and for a cylinder of finite length with free ends is given. Comparison of the calculation results is carried out according to the obtained values of ring stresses.


The finite element method has become established as a powerful tool for the solution of many problems of continuum mechanics where its physical interpretation, by analogy with discrete problems of structural analysis permits the user to exercise a considerable degree of insight and judgement in its use. Further it is now a recognized mathematical procedure of approximation which embraces many older methodologies (such as the finite difference method) as a subclass. In the field of geological studies its impact is fairly recent and only a limited application has been made to date. The techniques used here have been limited to those established over a decade ago in the parallel fields and recent developments and possibilities barely touched upon. In this paper the author therefore attempts to ( a ) outline some of the general mathematical and practical aspects of the method with illustrations from various fields which are relevant to geological problems, ( b ) survey accomplishments already made in geology and geotechnical fields, and ( c ) suggest some possible new extensions of application.


2020 ◽  
pp. 1-13
Author(s):  
José Luis Colín-Martínez ◽  
Victor Lopez-Garza ◽  
Isaac Hernández-Arriaga ◽  
María Guadalupe Navarro-Rojero

Currently, wind energy in Mexico is growing and the same is happening worldwide, so projects with national technologies for the manufacture of wind turbine components must be developed. In this work, a proposal is made for the design of the hub of the rotor for a 50-kW turbine, the objective is to make a new proposal to improve the previous design of project P07 of the Centro Mexicano de Innovación en Energía Eólica (CEMIEEólico), which has a welded mechanical hub for a prototype turbine 30 kW. In addition, a simulation is performed through analysis of the finite element method (FEA) by applying certain load elements with the simplified load method of the international standard IEC 61400-2. In these simulations, the load cases of the norm that directly influence the cube are analyzed, then simulated in the ANSYS software to validate the proposed design, mainly analyzing the stresses and deformations. The results obtained will serve as a reference to manufacture the cube and evaluate the feasibility of carrying out a commercial stage with a view to making national components for wind farms.


2020 ◽  
Author(s):  
Dang Quoc Vuong ◽  
Bui Minh Dinh

Modelling of realistic electromagnetic problems is presented by partial differential equations (FDEs) that link the magnetic and electric fields and their sources. Thus, the direct application of the analytic method to realistic electromagnetic problems is challenging, especially when modeling structures with complex geometry and/or magnetic parts. In order to overcome this drawback, there are a lot of numerical techniques available (e.g. the finite element method or the finite difference method) for the resolution of these PDEs. Amongst these methods, the finite element method has become the most common technique for magnetostatic and magnetodynamic problems.


1984 ◽  
Vol 49 (5) ◽  
pp. 1267-1276
Author(s):  
Petr Novák ◽  
Ivo Roušar

The electrochemical polishing with simultaneous shape changes of anodes was studied. A theory was derived based on the knowledge of basic electrochemical parameters and the solution of the Laplace equation. To this purpose, the finite element method and the finite difference method with a double transformation of the inter-electrode region were employed. Only the former method proved well and can therefore be recommended for different geometries.


2001 ◽  
Vol 09 (02) ◽  
pp. 671-680 ◽  
Author(s):  
W. A. MULDER

The finite-element method (FEM) with mass lumping is an efficient scheme for modeling seismic wave propagation in the subsurface, especially in the presence of sharp velocity contrasts and rough topography. A number of numerical simulations for triangles are presented to illustrate the strength of the method. A comparison to the finite-difference method shows that the added complexity of the FEM is amply compensated by its superior accuracy, making the FEM the more efficient approach.


Sign in / Sign up

Export Citation Format

Share Document