Microstructure after Solution Annealing of the Nuclear Grade Austenitic Stainless Steel DIN 1.4970

2021 ◽  
Vol 1016 ◽  
pp. 1147-1152
Author(s):  
Ronald Lesley Plaut ◽  
Angelo Fernando Padilha ◽  
Flavio Beneduce Neto ◽  
Leandro Gomes de Carvalho

The main objective of the present work was to characterize the phases that are present after solution annealing in the microstructure of the titanium stabilized austenitic stainless steel W.-Nr. 1.4970, developed as a candidate material for fast breeder reactor fuel cladding. The crystalline structure, chemical composition, quantity, size, morphology, and distribution of the phases present in the microstructure after solution annealing heat treatments were studied in detail with the help of several complementary techniques. Chemical dissolution of the matrix has been performed using the Berzelius solution and the extracted residue has been analyzed by X-ray diffraction in a high precision camera. Three phases have been observed and identified after solution annealing heat treatments performed in the 1090 to 1300 °C temperature range, namely: (Ti,Mo)C; Ti (N,C) and Ti4C2S2. The Ti-nitride and the Ti-carbosulfide did not dissolve in the steel matrix up to 1300 °C, on the other hand, the solubility of the (Ti,Mo)C raised strongly with temperature. A solution annealing heat treatment is recommended for the W. Nr. 1.4970 stainless steel.

2020 ◽  
Vol 1001 ◽  
pp. 207-211
Author(s):  
Xing Xing Tong ◽  
Xue Wen Tong

In this paper, there are tow part of module for predicting the Annealing heat treatments of Zr tube. The artificial neural network (ANN) were used for relationship between mechanical property and annealing parameters. The genetic algorithm (GA) were used for Annealing heat treatments of Zr tube. The best ANN network architecture is 2-8-3, and the optimum values of momentum factor is 0.8 while the Crossover is also 0.8 by ANN-GA, which can be efficiently track the effect of annealing Heat treatment on properties for Zr-4 alloy. Keywords: Zr alloy, Heat Treatment, mechanical propert


2013 ◽  
Vol 634-638 ◽  
pp. 2955-2959 ◽  
Author(s):  
Lie Shen ◽  
Liang Wang ◽  
Jiu Jun Xu ◽  
Ying Chun Shan

The fine grains and strain-induced martensite were fabricated in the surface layer of AISI 304 austenitic stainless steel by shot peening treatment. The shot peening effects on the microstructure evolution and nitrogen diffusion kinetics in the plasma nitriding process were investigated by optical microscopy and X-ray diffraction. The results indicated that when nitriding treatments carried out at 450°C for times ranging from 0 to 36h, the strain-induced martensite transformed to supersaturated nitrogen solid solution (expanded austenite), and slip bands and grain boundaries induced by shot peening in the surface layer lowered the activation energy for nitrogen diffusion and evidently enhanced the nitriding efficiency of austenitic stainless steel.


2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Nurulhuda Bashirom ◽  
Nurzatil Ismah Mohd Arif

This paper presents a study on the effect of milling speed on the synthesis of Cu-WC nanocomposites by mechanical alloying (MA). The Cu-WC nanocomposite with nominal composition of 25 vol.% of WC was produced in-situ via MA from elemental powders of copper (Cu), tungsten (W), and graphite (C). These powders were milled in the high-energy “Pulverisette 6” planetary ball mill according to composition Cu-34.90 wt% W-2.28 wt% C. The powders were milled in different milling speed; 400 rpm, 500 rpm, and 600 rpm. The milling process was conducted under argon atmosphere by using a stainless steel vial and 10 mm diameter of stainless steel balls, with ball-to-powder weight ratio (BPR) 10:1. The as-milled powders were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD result showed the formation of W2C phase after milling for 400 rpm and as the speed increased, the peak was broadened. No WC phase was detected after milling. Increasing the milling speed resulted in smaller crystallite size of Cu and proven to be in nanosized. Based on SEM result, higher milling speed leads to the refinement of hard W particles in the Cu matrix. Up to the 600 rpm, the unreacted W particles still existed in the matrix showing 20 hours milling time was not sufficient to completely dissolve the W.


2010 ◽  
Vol 643 ◽  
pp. 49-54 ◽  
Author(s):  
Carlos Augusto Nascimento Oliveira ◽  
Euclides Apolinário Cabral De Pina ◽  
Cezar Henrique Gonzalez ◽  
Carlos José de Araújo ◽  
U.S.L. Filho ◽  
...  

The use of smart material such as Ti-Ni in actuators application requires an intense mechanical and metallurgical investigation to understand its behavior. This paper studies martensitic transformation using DSC and X-ray diffraction techniques to compare shape memory parameters in Ti-50.2%Ni (A1) and equiatomic Ti-50.0%Ni (A2) Alloys. The as as-received samples were submitted to annealing at 400°C and 500°C for 24 hours then quenched in at 25°C. The influence of heat treatment on martensitic transformations temperatures and the appearance of R-phase were analyzed using DSC and X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document