Effect of Triple Junctions on Grain Boundary Migration

1998 ◽  
Vol 294-296 ◽  
pp. 517-520 ◽  
Author(s):  
Vera G. Sursaeva ◽  
U. Czubayko ◽  
Günter Gottstein ◽  
Lasar S. Shvindlerman
1995 ◽  
Vol 43 (2) ◽  
pp. 639-643 ◽  
Author(s):  
A.S. Lazarenko ◽  
I.M. Mikhailovskij ◽  
V.B. Rabukhin ◽  
O.A. Velikodnaya

2012 ◽  
Vol 715-716 ◽  
pp. 186-190 ◽  
Author(s):  
Luis A. Barrales Mora ◽  
Lasar S. Shvindlerman ◽  
Günter Gottstein

In a previous work [ we introduced the geometry of a granular system that allowed the study of the effect of a finite mobility of the quadruple and triple junctions on grain boundary migration. One of the most important conclusions of this work was that the triple junctions drag more effectively the motion of the grain boundaries than the quadruple junctions. Nevertheless, this conclusion was drawn without consideration of the grain size. For this reason, this conclusion might be contradictory with our understanding of the grain boundary junctions because while the effect of the triple lines is inverse linear with the grain size that of the quadruple junctions is proportional to the inverse square of the grain size and thus, quadruple junctions are expected to drag more effectively, at least, for very small grain sizes. In the present investigation, we studied comprehensively the effect of grain size on the evolution of the granular system under the assumption of a finite mobility of the boundary junctions. For this purpose, several network model simulations were carried out for different grain sizes ranging from nanoto micrometers using a fully periodic grain arrangement. The results seem to corroborate that the triple junctions drag more effectively the motion of the grain boundaries, however, for very low junction mobility and grain sizes the effect appears to be indistinguishable. It was also observed that for very low quadruple junction mobility the geometry of the granular system undergoes a severe transformation which results in the unfulfillment of the equation derived in [.


1969 ◽  
Vol 37 (286) ◽  
pp. 238-240 ◽  
Author(s):  
Donal M. Ragan

SummaryMosaic olivine textures, with straight triple grain boundaries meeting at angles of 120°, are common in dunites. This is a well-known feature of annealed metals, and is the result of grain-boundary migration during recrystallization in which the system tends toward a state of minimum interfacial energies. Geometrically similar textures are present at the boundaries between such mosaic grains and strain-banded relict olivine grains. The unstrained mosaic grains make angular projections into the strained grains exactly at the junctions between the deformation bands. These are interpreted to be triple junctions with the two differently oriented bands acting as separate grains, and thus also due to recrystallization.


Author(s):  
D. B. Williams ◽  
A. D. Romig

The segregation of solute or imparity elements to grain boundaries can occur by three well-defined processes. The first is Gibbsian segregation in which an element of minimal matrix solubility confines itself to a monolayer at the grain boundary. Classical examples include Bi in Cu and S or P in Fe. The second process involves the depletion of excess matrix solute by volume diffusion to the boundary. In the boundary, the solute atoms diffuse rapidly to precipitates, causing them to grow by the ‘collector-plate mechanism.’ Such grain boundary diffusion is thought to initiate “Diffusion-Induced Grain Boundary Migration,” (DIGM). This process has been proposed as the origin of eutectoid transformations or discontinuous grain boundary reactions. The third segregation process is non-equilibrium segregation which result in a solute build-up around the boundary because of solute-vacancy interactions.All of these segregation phenomena usually occur on a sub-micron scale and are often affected by the nature of the grain boundary (misorientation, defect structure, boundary plane).


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Anales AFA ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 47-51
Author(s):  
P.I. Achával ◽  
C. L. Di Prinzio

In this paper the migration of a grain triple junction in apure ice sample with bubbles at -5°C was studied for almost 3hs. This allowed tracking the progress of the Grain Boundary (BG) and its interaction with the bubbles. The evolution of the grain triple junction was recorded from successive photographs obtained witha LEICA® optical microscope. Simultaneously, numerical simulations were carried out using Monte Carlo to obtain some physical parameters characteristic of the BG migration on ice.


Sign in / Sign up

Export Citation Format

Share Document