Tension-Compression Asymmetry in Plasticity Modeling of a Single Crystal Superalloy Using a "Unit Cell" Approach

2005 ◽  
Vol 475-479 ◽  
pp. 3295-3298
Author(s):  
Y.S. Choi ◽  
T.A. Parthasarathy ◽  
D.M. Dimiduk ◽  
M.D. Uchic

The [001] tensile and compressive flow behavior of a single crystal superalloy CMSX-4 was simulated using a “unit-cell” mesh to represent the γ/γ′ microstructure. The simulation results showed a tension-compression (T-C) asymmetry, where the magnitude of the flow stress is larger in the elastic-plastic transition regime in tension, and is larger in compression in the plastic (flow softening) regime. The T-C flow behavior was related to the flow response of the γ-phase matrix under the geometric and kinematic constraint of the γ/γ′ unit cell.

2014 ◽  
Vol 891-892 ◽  
pp. 416-421 ◽  
Author(s):  
Mikael Segersäll ◽  
Johan Moverare ◽  
Daniel Leidermark ◽  
Kjell Simonsson

In this study, low-cycle fatigue (LCF) tests at 500 °C in the <001>, <011> and <111> directions have been performed for the Ni-based single-crystal superalloy MD2. All tests were carried out in strain control with Rε=-1. The <001> direction has the lowest stiffness of the three directions and also shows the best fatigue properties in this study followed by the <011> and <111> directions, respectively. It is well recognised that Ni-based single-crystal superalloys show a tension/compression asymmetry in yield strength and this study shows that a tension/compression asymmetry also is prevalent during LCF conditions. At mid-life, the <001> direction generally has a higher stress in tension than in compression, while the opposite is true for the <011> direction. For the <111> direction the asymmetry is found to be strain range dependent. The <011> and <111> directions show a cyclic hardening behaviour when comparing cyclic stress-strain curves with monotonic stress-strain curves. In addition, the <011> and <111> directions show a serrated yielding behaviour for a number of cycles while the yielding of the <001> direction is more stable.


2016 ◽  
Vol 33 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Zhixun Wen ◽  
Haiqing Pei ◽  
Baizhi Wang ◽  
Dongxu Zhang ◽  
Zhufeng Yue

2011 ◽  
Vol 117-119 ◽  
pp. 503-508
Author(s):  
Zhi Ping Ding ◽  
Ming Li ◽  
Teng Fei Wang ◽  
Rong Hua Yang

Based on micro structure of Ni-based single crystal superalloy, a γ/γ’ two-phase unit cell finite element model was established, and its cyclic stress-strain was simulated under tension/torsion cyclic loading. A low cycle fatigue (LCF) life prediction model of single crystal superalloy was proposed by using cyclic plasticity strain energy as a parameter based on energy dissipation theory. Calculation results of macro finite element model and γ/γ’ two-phase unit cell micro finite element model, and multiaxial LCF test data of CMSX-2 Ni-based single crystal superalloy along [001] orientation were applied to fit the LCF life model by multiple linear regression. The results show that the unit cell model not only reflects the microstructure characteristics of single crystal Ni-based superalloy, but also is better than the macro model in accuracy of analysis, and greatly improve the accuracy of fatigue life prediction. Almost test data fall into the factor of 2.0 scatter band.


2010 ◽  
Vol 58 (15) ◽  
pp. 4986-4997 ◽  
Author(s):  
D. Leidermark ◽  
J.J. Moverare ◽  
S. Johansson ◽  
K. Simonsson ◽  
S. Sjöström

2018 ◽  
Author(s):  
Motoki Sakaguchi ◽  
Ryota Komamura ◽  
Mana Higaki ◽  
Xiaosheng Chen ◽  
Hirotsugu Inoue

2005 ◽  
Vol 475-479 ◽  
pp. 655-660 ◽  
Author(s):  
Q. Feng ◽  
L.J. Rowland ◽  
T.M. Pollock

Three unusual Ru-rich phases have been identified in a multicomponent Ni-base single crystal superalloy, including a L21 Ru2AlTa Heusler phase, a B2 RuAl phase and a hcp Re(Ru)-rich δ phase. These phases have their own preferential precipitation location within the dendritic structure. No conventional topologically-close-packed (TCP) phases have been observed with thermal exposure at 950oC for 1500 hours.


2021 ◽  
pp. 109737
Author(s):  
Hai-Qing Pei ◽  
Meng Li ◽  
Ping Wang ◽  
Xiao-Hu Yao ◽  
Zhi-Xun Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document