scholarly journals Particle Distribution and Orientation in Al-Al3Zr and Al-Al3Ti FGMs Produced by the Centrifugal Method

2005 ◽  
Vol 492-493 ◽  
pp. 609-614 ◽  
Author(s):  
P.D. Sequeira ◽  
Yoshimi Watanabe ◽  
L.A. Rocha

Al-Al3Zr and Al-Al3Ti functionally graded materials (FGMs) were produced by a centrifugal method from Al-5wt% Zr and Al-5wt% Ti alloys, respectively. Applied centrifugal forces were 30, 60 and 120G (units of gravity). Microstructural characterization was performed to evaluate the intermetallic particles’ distribution and orientation. Knoop hardness tests were carried out, with the indenter’s long diameter normal to the centrifugal force direction. Both the Al3Zr and the Al3Ti intermetallic particles are platelet in morphology. These platelets tend to be oriented normal to the centrifugal force direction. Higher applied centrifugal force increases both the intermetallic platelet volume fraction as well as their orientation in the outer regions of the fabricated FGM rings. Also higher orientation and volume fraction distribution are observed in the Al- Al3Ti FGMs. Knoop hardness measurements in general follow the same trend as the intermetallic particle volume fraction for each sample.

1999 ◽  
Author(s):  
J. W. Gao ◽  
S. J. White ◽  
C. Y. Wang

Abstract A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.


2000 ◽  
Vol 123 (2) ◽  
pp. 368-375 ◽  
Author(s):  
J. W. Gao ◽  
C. Y. Wang

A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on understanding the interplay between the freezing front dynamics and particle transport during solidification. Transparent model experiments were performed in a rectangular ingot using pure water and succinonitrile (SCN) as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured in situ by bifurcated fiber optical probes working in the reflection mode. The effects of important processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional multiphase solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results and subsequently used as a tool for efficient computational prototyping of an Al/SiC FGM.


2008 ◽  
Vol 587-588 ◽  
pp. 207-211 ◽  
Author(s):  
S.C. Ferreira ◽  
Alexandre Velhinho ◽  
L.A. Rocha ◽  
Francisco Manuel Braz Fernandes

Syntactic functionally graded metal matrix composites (SFGMMC) are a class of metallic foams in which closed porosity results from the presence of hollow ceramic microspheres (microballoons), whose spatial distribution varies continuously between the inner and the outer section of the part, thus resulting in a continuous variation in properties. In this work, aluminiumbased SFGMMC rings were fabricated by radial centrifugal casting. The graded composition along the radial direction is controlled mainly by the difference in the centrifugal forces which act on the molten metal matrix and the ceramic particles, due to their dissimilar densities. In this case where the density of the SiO2-Al2O3 microballoons is lower than that of molten aluminium, the particles show a tendency to remain closer to the inner periphery of the ring. Thus the microballoon volume fraction increases along the radial direction of the ring from the outer to the inner periphery; in other words, the particle-rich zone is limited to an inner layer of the ring. Precursor conventional MMCs were prepared by stir-casting from the constituent materials, by homogeneously dispersing commercial SiO2-Al2O3 microballoons (particle size: 50 µm; particle volume fraction: 5 and 10 %) within a molten commercial Al-7Si-0.3Mg (A356) alloy. The resulting MMCs were then re-melt and centrifugally cast in order to produce the functionally graded composites. Particle gradients in the centrifugally cast composites were investigated by quantitative image analysis of optical micrographs (for the estimation of the particle volume fraction, mean particle diameter and porosity volume fraction).


2015 ◽  
Vol 19 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jahar Sarkar

The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction) are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.


2021 ◽  
Author(s):  
Yosephus Ardean Kurnianto Prayitno ◽  
Tong Zhao ◽  
Yoshiyuki Iso ◽  
Masahiro Takei

2021 ◽  
Author(s):  
Bertrand Rollin ◽  
Frederick Ouellet ◽  
Bradford Durant ◽  
Rahul Babu Koneru ◽  
S. Balachandar

Abstract We study the interaction of a planar air shock with a perturbed, monodispersed, particle curtain using point-particle simulations. In this Eulerian-Lagrangian approach, equations of motion are solved to track the position, momentum, and energy of the computational particles while the carrier fluid flow is computed in the Eulerian frame of reference. In contrast with many Shock-Driven Multiphase Instability (SDMI) studies, we investigate a configuration with an initially high particle volume fraction, which produces a strongly two-way coupled flow in the early moments following the shock-solid phase interaction. In the present study, the curtain is about 4 mm in thickness and has a peak volume fraction of about 26%. It is composed of spherical particles of d = 115μm in diameter and a density of 2500 kg.m−3, thus replicating glass particles commonly used in multiphase shock tube experiments or multiphase explosive experiments. We characterize both the evolution of the perturbed particle curtain and the gas initially trapped inside the particle curtain in our planar three-dimensional numerical shock tube. Control parameters such as the shock strength, the particle curtain perturbation wavelength and particle volume fraction peak-to-trough amplitude are varied to quantify their influence on the evolution of the particle cloud and the initially trapped gas. We also analyze the vortical motion in the flow field. Our results indicate that the shock strength is the primary contributor to the cloud particle width. Also, a classic Richtmyer-Meshkov instability mixes the gas initially trapped in the particle curtain and the surrounding gas. Finally, we observe that the particle cloud contribute to the formation of longitudinal vortices in the downstream flow.


2018 ◽  
Vol 7 (12) ◽  
pp. 1400-1407 ◽  
Author(s):  
Nadia M. Krook ◽  
Jamie Ford ◽  
Manuel Maréchal ◽  
Patrice Rannou ◽  
Jeffrey S. Meth ◽  
...  

2010 ◽  
Vol 82 (1) ◽  
pp. 69-86
Author(s):  
Reghan J. Hill

A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across membranes that separate electrolytes with different concentrations. The membranes are uncharged polymeric hydrogels in which charged spherical colloidal particles are immobilized and randomly dispersed with a low solid volume fraction. Bulk membrane characteristics and performance are calculated from a continuum microscale electrokinetic model (Hill 2006b, c). The computations undertaken in this paper quantify the streaming and membrane potentials. For the membrane potential, increasing the volume fraction of negatively charged inclusions decreases the differential electrostatic potential across the membrane under conditions where there is zero convective flow and zero electrical current. With low electrolyte concentration and highly charged nanoparticles, the membrane potential is very sensitive to the particle volume fraction. Accordingly, the membrane potential - and changes brought about by the inclusion size, charge and concentration - could be a useful experimental diagnostic to complement more recent applications of the microscale electrokinetic model for electrical microrheology and electroacoustics (Hill and Ostoja-Starzewski 2008, Wang and Hill 2008).


Sign in / Sign up

Export Citation Format

Share Document