Simulation of Threading Edge Dislocation Images in X-Ray Topographs of Silicon Carbide Homo-Epilayers

2006 ◽  
Vol 527-529 ◽  
pp. 411-414
Author(s):  
William M. Vetter ◽  
Hidekazu Tsuchida ◽  
Isaho Kamata ◽  
Michael Dudley

Among the types of dislocation seen in homo-epilayers of SiC grown upon 4H-SiC wafers with an 8° surface offcut are basal plane dislocations propagated into the epilayer at an 8° inclination, and threading edge dislocations. These types may be imaged by monochromatic synchrotron x-ray topography in the grazing-incidence reflection geometry using the 11 2 8 reflection. Equations needed to apply the ray-tracing method of computer simulating x-ray topographic defect images in this experimental geometry were derived and used to simulate images of the threading edge dislocations. Simulations of the threading edge dislocations showed 4 μm wide white ovals with narrow arcs of dark contrast at their ends, inclined relative to the g-vector of the topograph according to the sign of their Burgers vector. These resembled the experimental topographs, inasmuch as was possible at the maximum resolution of x-ray topographs.

2005 ◽  
Vol 38 (3) ◽  
pp. 442-447 ◽  
Author(s):  
W. M. Vetter ◽  
H. Tsuchida ◽  
I. Kamata ◽  
M. Dudley

Three types of dislocation are seen in homo-epilayers of SiC grown on 4H-SiC wafers with an 8° surface offcut: axial screw dislocations, basal plane dislocations propagated into the epilayer at an 8° inclination and threading edge dislocations. These types may be imaged by monochromatic synchrotron X-ray topography in the grazing-incidence reflection geometry using the 11\overline 28 reflection. Equations needed to apply the ray-tracing method of computer simulating X-ray topographic defect images in this experimental geometry were derived and used to simulate images of all three. Simulations for axial screw dislocations appear as white circles surrounded by narrow dark rings, and those for basal plane dislocations as linear white streaks, both consistent with experimental topographs. Simulations of the threading edge dislocations showed 4 µm wide white ovals with narrow arcs of dark contrast at their ends, inclined relative to the g vector of the topograph according to the sign of their Burgers vector. These images resembled the experimental topographs inasmuch as was possible at the maximum resolution of X-ray topographs.


2008 ◽  
Vol 600-603 ◽  
pp. 321-324 ◽  
Author(s):  
Hirofumi Matsuhata ◽  
Hirotaka Yamaguchi ◽  
Ichiro Nagai ◽  
Toshiyuki Ohno ◽  
Ryouji Kosugi ◽  
...  

Dislocations in a substrate wafer of 4H-SiC with an epi-layer were observed using technique of monochromatic synchrotron X-ray topography in a grazing incidence geometry. Six different Burgers vectors of basal plane dislocations and threading edge dislocations were identified by changing the Bragg reflections, and by analysis of images of dislocation. We identify some relations of the Burgers vector and the dislocation contrast observed for g=11 2 8. Some of these relationships are discussed in this report.


Author(s):  
Chad E. Miller ◽  
Jaroslaw Majewski ◽  
Thomas Gog ◽  
Tonya L. Kuhl

AbstractUsing complementary X-ray reflectivity (XR) and grazing incidence X-ray diffraction (GIXD), we report structural studies of supported thin-organic layers in contact with water and air. Using a monochromatic synchrotron beam to penetrate 10 mm of liquid, we have characterized buried films composed of 12.5 repeating bilayers of arachidic acid (C


1998 ◽  
Vol 524 ◽  
Author(s):  
X. R. Huang ◽  
M. Dudley ◽  
W. M. Vetter ◽  
W. Huang ◽  
S. Wang ◽  
...  

ABSTRACTThe topographic contrast of superscrew dislocations in 6H-SiC crystals has been studied by synchrotron white-beam x-ray topography in the Bragg reflection geometry. The diffraction images of these dislocations are simulated using a ray-tracing method. Systematical simulations, which coincide with the dislocation images taken by back-and grazing-reflection topography, clearly reveal the kinematic diffraction mechanisms of the superscrew dislocation, and illustrate that synchrotron reflection topography is capable of providing accurate descriptions of the strain fields, the Burgers vector magnitudes, and the senses of these dislocations. In addition, our experiments and simulations demonstrate straightforwardly the relation between the topographic contrast and the lattice distortions, and therefore the general mechanisms underlying contrast formation of defect images in synchrotron reflection topographs are provided.


2018 ◽  
Vol 57 (7) ◽  
pp. B74 ◽  
Author(s):  
Jun Yu ◽  
Zhengxiang Shen ◽  
Pengfeng Sheng ◽  
Xiaoqiang Wang ◽  
Charles J. Hailey ◽  
...  

2012 ◽  
Vol 1433 ◽  
Author(s):  
Xuan Zhang ◽  
Hidekazu Tsuchida

ABSTRACTConversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) has been observed in 4H-SiC epilayers by simple high temperature annealing. Grazing incidence reflection synchrotron X-ray topography was used to image the dislocations in the epilayers. By comparing the X-ray topographs before and after annealing, some of the BPDs were confirmed to convert to TEDs from the epilayer surface. The dislocation behaviors during annealing are explained and the mechanism of BPD conversion is discussed. It is argued that the conversion process is realized by constricted BPD segments cross-slipping to the prismatic plane driven by the image force and TED glide on its slip plane driven by the line tension. Certain kinetic processes may assist the formation of constrictions on the BPDs.


2014 ◽  
Vol 23 (6) ◽  
pp. 065206
Author(s):  
Quan-Li Dong ◽  
Yun-Quan Liu ◽  
Hao Teng ◽  
Ying-Jun Li ◽  
Jie Zhang

2008 ◽  
Vol 600-603 ◽  
pp. 309-312 ◽  
Author(s):  
Hirofumi Matsuhata ◽  
Hirotaka Yamaguchi ◽  
Ichiro Nagai ◽  
Toshiyuki Ohno ◽  
Ryouji Kosugi ◽  
...  

4H-SiC substrate wafers with epi-layers were observed using monochromatic synchrotron X-ray topography in grazing incidence geometries, to investigate the defects in the epi-layer. Misfit dislocations with b=+1/3[11 2 0] caused by the difference in lattice parameter between the epi-layer and the substrate were observed. The misfit dislocations are located near the interface as edge dislocations, and appear at the top surface as screw dislocations on basal planes. It was observed that more than half of them were introduced from the growing epi-layer surface. The misfit dislocations and some screw dislocations with b=+1/3[11 2 0] are observed to remain as basal plane dislocations at the surface, while other basal plane dislocations were converted to threading edge dislocations in the epi-layer.


2020 ◽  
Vol 53 (5) ◽  
pp. 1212-1216
Author(s):  
Yvo Barnscheidt ◽  
Jan Schmidt ◽  
H. Jörg Osten

The Ge/Si(001) system has been analysed by grazing-incidence X-ray diffraction on a standard laboratory X-ray diffraction tool. A periodic array of interfacial edge dislocations forms a coincidence site lattice (CSL) which yields equidistantly spaced satellite peaks close to Bragg peaks of the Ge layer and Si substrate. The diffraction behaviour of the CSL was analysed using 2θ/φ scans along [100], [110] and [310] directions as well as azimuthal φ scans which revealed a 90° angular symmetry of the CSL. Additionally, different layer thicknesses, from 10 to 580 nm, were analysed, focusing on the dependence of layer thickness on the glancing angles of the satellite peaks. This method provides the ability to analyse whether or not epitaxially grown layers exhibit a periodic array of dislocations, and gain information about the orientation of the interfacial edge dislocations.


Sign in / Sign up

Export Citation Format

Share Document