Insulation and Magnetic Properties of Iron Powder Coated by Wet Chemical Method

2007 ◽  
Vol 534-536 ◽  
pp. 1329-1323
Author(s):  
Hyun Rok Cha ◽  
Hyeon Taek Son ◽  
Cheol Ho Yun ◽  
Jae Ik Cho ◽  
Ik Hyun Oh ◽  
...  

Magnetic core components are often made from laminated sheet steel, but they are difficult to manufacture in near net shape, resulting in large core losses at higher frequencies. In this study, the pure iron powder was treated with aqueous phosphoric acid to produce phosphate insulating layer on the surface. After drying the powder, it was mixed with 0.5wt% Zn stearate and compacted in a mold with a diameter of 20mm at 800MPa. The powder compacts were then heat treated at 500°C for 1 hour. The results showed that insulated iron powder was obtained with uniform phosphate layer by chemical reaction. With increased amount of phosphate layer, the core loss and density of compacts were decreased. It was also found that the addition of ethyl alcohol during insulating reaction resulted in improved core loss value.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 919
Author(s):  
Lukasz Hawelek ◽  
Tymon Warski ◽  
Patryk Wlodarczyk ◽  
Marcin Polak ◽  
Przemyslaw Zackiewicz ◽  
...  

The effects of Co for Fe substitution on magnetic properties, thermal stability and crystal structure of Fe85.45−xCoxCu0.55B14 (x = 0, 2.5, 5, 7.5, 10) melt spun amorphous alloys were investigated. The Cu content was firstly optimized to minimize the energy of amorphous phase formation by the use of a thermodynamic approach. The formation of crystalline α-Fe type phase has been described using differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. The classical heat treatment process (with heating rate 10 °C/min) in vacuum for wound toroidal cores was optimized in the temperature range from 280 to 430 °C in order to obtain the best magnetic properties (magnetic saturation Bs and coercivity Hc obtained from the B(H) dependencies) at 50 Hz frequency. For optimal heat-treated samples, the complex magnetic permeability in the frequencies 104–108 Hz at room temperature was measured. Finally, magnetic core losses were obtained for 1 T/50 Hz and 1.5 T/50 Hz values for samples annealed at T = 310 °C. An analysis of transmission electron microscope images and electron diffraction patterns confirmed that high magnetic parameters are related to the coexistence of the amorphous and nanocrystalline phases.


Alloy Digest ◽  
1975 ◽  
Vol 24 (6) ◽  

Abstract ALLOY 48 is a vacuum-melted, 48% nickel-iron alloy designed for high permeability, and low core losses. It is ideal in applications requiring efficient magnetic core materials, such as audio and instrument transformers, instrument relays, and many other communication equipment devices. It is excellent for rotor and stator laminations, and is also a very effective magnetic shielding material. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Fe-52. Producer or source: Magnetics Specialty Metals Division. See also Alloy Digest Fe-96, April 1992.


Alloy Digest ◽  
1976 ◽  
Vol 25 (1) ◽  

Abstract Round Permalloy 80 is an 80% nickel-iron-molybdenum alloy that provides very high initial and maximum magnetic permeabilities and minimal core losses at low field strengths. This vacuum-melted product also offers the advantages of small size and weight in magnetic core and shielding materials for numerous applications. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-223. Producer or source: Spang Industries Inc..


Author(s):  
Swathi K. Manchili ◽  
Johan Wendel ◽  
Eduard Hryha ◽  
Lars Nyborg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document