Dispersibility of Carbon Nanotubes

2007 ◽  
Vol 537-538 ◽  
pp. 161-168 ◽  
Author(s):  
T. Gábor ◽  
D. Aranyi ◽  
Katalin Papp ◽  
F.H. Kármán ◽  
Erika Kálmán

Availability of a stable carbon nanotube suspension is a prerequisite for production of polymer composites with carbon nanotube as additives. In this work nanotube suspensions, which have been prepared from various nanotubes in different dispersion agents, were compared. Dispersibility of the samples was investigated by scanning electon microscopy and atomic force microscopy. Solution of a non-ionic surfactant was also used successfully as a new dispersion agent. Geometrical parameters of the carbon nanotubes were determined by using atomic force microscopy. Correlation was found between the dispersibility and the parameters of the nanotubes and relative permittivity of the different solvents.

Author(s):  
Hyung Woo Lee ◽  
Soon Geun Kwon ◽  
Soo Hyun Kim ◽  
Yoon Keun Kwak ◽  
Chang Soo Han

We report a simple, low cost, reliable technique of making carbon nanotube (CNT) modified atomic force microscopy (AFM) tip. We used the dielectrophoresis and the electrophoresis to align and deposit carbon nanotubes on the end of the AFM tip. From the simulation and the various experiments, we obtained the optimal electric condition, 0.32Vpp/μm. Also, we found that the blunt shape of the tip’s apex is more effective than sharpened one. Through the experiments, we verified that the blunt shape is more effective over 50% than the sharpened one in the attachment of CNTs. By comparing the scanning results between the CNT modified tip and a normal AFM tip, we obtained the improvement in efficiency of 23%.


2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3707-3710 ◽  
Author(s):  
Nami Choi ◽  
Takayuki Uchihashi ◽  
Hidehiro Nishijima ◽  
Takao Ishida ◽  
Wataru Mizutani ◽  
...  

2004 ◽  
Vol 858 ◽  
Author(s):  
Massood Z. Atashbar ◽  
Bruce Bejcek ◽  
Srikanth Singamaneni

ABSTRACTIn this paper we describe a single wall carbon nanotube (SWNT) based biological sensor for the detection of biomolecules using streptavidin and IgG. Two types of sensing mechanisms have been used to demonstrate the ability of carbon nanotubes to form nanoscale biosensors. The first sensing mechanism involves a CNT based conduction sensor in which the decrease in the current was observed when the specific biomolecule was bound. In the second mechanism Quartz Crystal Microbalance (QCM) was used to quantify the mass of the biomolecule bound on the sidewalls of the carbon nanotube. Both sensing mechanisms proved to be efficient and consistent. Immobilization of the biomolecules on the carbon nanotube surface was confirmed by Atomic Force Microscopy.


2003 ◽  
Vol 543 (1-3) ◽  
pp. 57-62 ◽  
Author(s):  
S. Decossas ◽  
L. Patrone ◽  
A.M. Bonnot ◽  
F. Comin ◽  
M. Derivaz ◽  
...  

Nano Research ◽  
2012 ◽  
Vol 5 (4) ◽  
pp. 235-247 ◽  
Author(s):  
Rouholla Alizadegan ◽  
Albert D. Liao ◽  
Feng Xiong ◽  
Eric Pop ◽  
K. Jimmy Hsia

Nano Letters ◽  
2012 ◽  
Vol 12 (8) ◽  
pp. 4110-4116 ◽  
Author(s):  
P. T. Araujo ◽  
N. M. Barbosa Neto ◽  
H. Chacham ◽  
S. S. Carara ◽  
J. S. Soares ◽  
...  

2012 ◽  
Vol 23 (30) ◽  
pp. 305707 ◽  
Author(s):  
A Schulze ◽  
T Hantschel ◽  
A Dathe ◽  
P Eyben ◽  
X Ke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document