Texture Evolution of Ferritic (AlSl 430) Stainless Steel Strips during Cold Rolling, Annealing and Drawing

2007 ◽  
Vol 539-543 ◽  
pp. 4926-4931 ◽  
Author(s):  
A. Ferreira Filho ◽  
C. Herrera ◽  
Nelson Batista de Lima ◽  
R.L. Plaut ◽  
Angelo Fernando Padilha

The evolution of the crystallographic texture of ferritic stainless steels, starting from the as received (hot rolled) condition from the steel mill, going through cold rolling, annealing and final stamping is analyzed in this paper. Two ferritic stainless steels (Nb stabilized) having a thickness of 3.0 and 0.7mm, have been employed. The thicker one has been cold rolled to 40 and 73% thickness reduction, annealed at 750 and 850°C for 1 hour. The thinner one, with a similar composition, has been 77% cold rolled and annealed at 870°C at the steel plant and subsequently submitted to deep drawing in order to evaluate texture and drawability. Texture has been evaluated using DRX in the as received, cold rolled, annealed and after drawing conditions. Drawability has been evaluated using tensile testing in order to obtain the FLC curves. AISI 430 stainless steel, in the as received condition presented a strong {100} texture in the <110> and <120> directions and the gamma fiber. After cold rolling, the material presented stronger gamma and weaker alpha fibers. Annealing of the cold rolled samples conduced to the vanishing of the alpha and strengthening of the gamma fiber, adequate for deep drawing operations. In spite of the AISI 430 of 0.7mm having presented a strong gamma fiber, other deep drawing properties were not adequate and the material cracked during stamping.

2007 ◽  
pp. 4926-4931
Author(s):  
A. Ferreira Filho ◽  
C. Herrera ◽  
Nelson Batista de Lima ◽  
R.L. Plaut ◽  
Angelo Fernando Padilha

2018 ◽  
Vol 941 ◽  
pp. 364-369
Author(s):  
Matias Jaskari ◽  
Antti Järvenpää ◽  
L. Pentti Karjalainen

Typical applications of ferritic stainless steels require good formability of a steel that is highly dependent on the processing route. In this study, the effects of heating rate and peak temperature on the texture and formability of a 78% cold-rolled unstabilized 17%Cr (AISI 430) ferritic stainless steel were studied. The cold-rolled sheet pieces were heated in a Gleeble 3800 simulator at the heating rates of 25 °C/s and 500 °C/s up to various peak temperatures below 950 °C for 10 s holding before the final cooling at 35 °C/s to room temperature. Microstructures were characterized and the texture of the annealed samples determined by the electron backscatter diffraction method. The R-value in various directions was determined by tensile straining to 15%. It was established that the high heating rate of 500 °C/s tends to promote the nucleation of grains with the {111}<uvw> orientations during the early state of the recrystallization. The higher heating rate led to a slightly finer grain size and to a marginal improvement in the intensity of the gamma-fibre texture. A coarser grain size would be beneficial for the formability, but the grain growth was suppressed due to low peak temperatures and a short soaking time. Anyhow, the fast annealing resulted in an enhanced R-value in the transverse to rolling direction. The results indicate that even a short annealing cycle is plausible for producing ferritic stainless steels with the formability properties comparable to those of commercial counterparts.


2010 ◽  
Vol 163 ◽  
pp. 151-156 ◽  
Author(s):  
Janusz Ryś ◽  
Małgorzata Witkowska

The present examination is a part of project concerning a deformation behavior of duplex type ferritic-austenitic stainless steels. The investigations included the analysis of ferrite and austenite microstructures formed in cold-rolled sheet of super-duplex stainless steel, major deformation mechanisms operating in both constituent phases and changes in morphology of two-phase structure after the thermo-mechanical treatment and subsequent cold-rolling. Duplex type stainless steels develop the band-like ferrite-austenite morphology in the course of hot- and cold-rolling. This specific two-phase structure creates different conditions for plastic deformation in comparison to single phase steels. The interaction of both phases upon deformation exerts fairly significant influence on structure and texture formation in both constituent phases and in consequence affects the material properties and its behavior upon further processing.


2010 ◽  
Vol 638-642 ◽  
pp. 3009-3014 ◽  
Author(s):  
Rodrigo P. Siqueira ◽  
Hugo Ricardo Zschommler Sandim ◽  
Tarcisio R. Oliveira

Ferritic stainless steels (FSSs) have excellent corrosion resistance and good mechanical properties. Applications include heaters, houseware, and automotive exhaust systems. Alloying, even in small amounts, affects the recrystallization behavior of FSSs by selective dragging or pinning effects. In the present study, we present the main results regarding the recrystallization of a coarse-grained Nb-containing AISI 430 ferritic stainless steel. The material was processed by hot rolling and further annealed at 1250oC for 2 h to promote secondary recrystallization. Following, the material was cold rolled to a 80% reduction in thickness and annealed at 400-1000oC for 15 min. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) were used to characterize the microstructure. Recrystallization of this steel begins at 700oC. Important orientation effects were observed in both as-rolled and annealed conditions. Recrystallization kinetics was strongly dependent on the initial orientation of the coarse grains. Results show that grain boundaries, transition bands and coarse Nb(C,N) particles are preferential sites for nucleation at moderate annealing temperatures.


Texture ◽  
1972 ◽  
Vol 1 (1) ◽  
pp. 71-86 ◽  
Author(s):  
M. Yantaç ◽  
W. T. Roberts ◽  
D. V. Wilson

Two grades of ferritic stainless steels (495 and 410.types) containing about 13 % chromium have been processed by cold rolling with intermediate and final anneals. The development of textures has been followed and the plastic anisotropy of the annealed sheet has been assessed. Processing conditions for the development of anisotropy favourable for deep drawing applications have been defined for the 405 type stainless steel. The evolution of the favourable {554} 〈225〉 texture component appears to be progressive throughout the processing. It is particularly well-developed after two moderate cold rolling reductions of about 70 % and a final anneal at 850–900°C. Differences between the 405 and 410 steels have been attributed to differences present in the early stages of processing.


2011 ◽  
Vol 312-315 ◽  
pp. 51-55
Author(s):  
A. Shokohfar ◽  
S. M. Abbasi ◽  
Ali Yazdani ◽  
Behnam Rabiee

In this study, cold rolling and annealing are used to refine the austenite grains of 301 austenitic stainless steel. The 301 austenitic stainless steel was cold rolled for 70 and 90% strain and then annealed. Effects of cold rolling factors and temperatures and annealing times on microstructure, hardness and tensile properties have been studied.


2016 ◽  
Vol 879 ◽  
pp. 1656-1661
Author(s):  
Paula Oliveira Malta ◽  
Iane Dutra Moutinho ◽  
Davi Silva Alves ◽  
Aline Vasconcelos Ferreira ◽  
Dagoberto Brandão Santos

The ferritic stainless steel type 430 stabilized with Nb, with and without annealing after hot rolling, was cold rolled and subjected to isothermal annealing at temperatures 650, 700 and 750°C for times ranging between 10 to 86400 s. The recrystallization kinetics was evaluated by JMAK model through microhardness measurements and KAM and GOS parameters. The Avrami exponent data indicate the occurrence of an unidimensional grain growth due only to high angle boundaries migration, with values ranging between 0.9 and 1.2. The nucleation rate and grain growth decreased continuously with time. The evolution of the texture was analyzed via EBSD analysis by ODF maps. The steel recrystallization is based on combination of ON and SG theories, due to presence of {111}<121>, {554}<225> and {111}<112> related to γ fiber. The rotated cube component, feature of the hot rolled steel, decreased with annealing time.


2019 ◽  
Vol 61 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Ali Kaya Gür ◽  
Tülay Yildiz ◽  
Nida Kati ◽  
Sinan Kaya

Alloy Digest ◽  
2013 ◽  
Vol 62 (11) ◽  

Abstract MAGIVAL MG2 is a free machining ferritic stainless steel grade with the same high machinability and corrosion resistance as type 430F, but offering a higher magnetic permeability and lower coercive force than MG1 (Alloy Digest SS-1159, October 2013). Magival is a group of easily workable ferritic stainless steels developed for magnetic applications where high permeability and low coercive force are required. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1161. Producer or source: Valbruna Stainless Steel.


Sign in / Sign up

Export Citation Format

Share Document