The Effect of Isothermal Heat Treatment on the Rolling Contact Fatigue of Carburized Low Carbon Microalloyed Steel

2007 ◽  
Vol 544-545 ◽  
pp. 151-154
Author(s):  
Jae Seong Lee ◽  
Bok Han Song ◽  
H. G. Sung ◽  
S. Y. Kim ◽  
Bo Young Hur

In case of the low carbon chromium steel that have widely been used for the carburized gears or rolling bearings, the austenite grain coarsening may be occasionally occurred during carburizing. To restrain this phenomenon, most of hot forged parts have been given to an isothermal heat treatment or normalizing immediately after hot forging and/or prior to carburizing. Therefore, their production cost includes unexpected additional expenses caused by such a non-value added process. To confirm the possibility of an energy saving, as well as attaining a superior fatigue life, in the production of automotive parts to be carburized, the austenite grain coarsening with the manufacturing process of the microalloyed steel, containing Nb and B as a grain refining elements, was investigated. The heat treatment characteristics and rolling contact fatigue behavior of the carburized specimens with the isothermal heat treatment were also investigated. In spite of omitting the isothermal heat treatment after hot forging, the abnormally coarse austenite grains were not found out in the carburized specimens. However, the rolling contact fatigue life of the carburized specimens, in which the isothermal heat treatment was omitted, was shorter than that of isothermally heat-treated specimens.

1982 ◽  
Vol 104 (3) ◽  
pp. 330-334 ◽  
Author(s):  
A. H. Nahm

Accelerated rolling contact fatigue tests were conducted to study the effect of grain flow orientation on the rolling contact fatigue life of vacuum induction melted and vacuum arc remelted (VIM-VAR) AISI M-50. Cylindrical test bars were prepared from a billet with 0, 45, and 90 deg orientations relative to billet forging flow direction. Tests were run at a Hertzian stress of 4,826 MPa with a rolling speed of 12,500 rpm at room temperature, and lubricated with Type I (MIL-L-7808G) oil. It was observed that rolling contact fatigue life increased when grain flow line direction became more parallel to the rolling contact surface.


Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


2021 ◽  
Vol 2021.59 (0) ◽  
pp. 05a5
Author(s):  
Hirotomo HOSOI ◽  
Yugo KAMEI ◽  
Hirotoshi AKIYAMA ◽  
Jusei MAEDA ◽  
Masanori SEKI

Sign in / Sign up

Export Citation Format

Share Document