Effect of Sc and Zr Additions on Microstructure and Mechanical Properties of Conventional Cast and P/M Aluminium

2007 ◽  
Vol 567-568 ◽  
pp. 357-360 ◽  
Author(s):  
M. Kolář ◽  
Vladivoj Očenášek ◽  
J. Uhlíř ◽  
Ivana Stulíková ◽  
Bohumil Smola ◽  
...  

The influence of plastic deformation and heat-treatment on the precipitation of Al3(Sc, Zr) particles and the effect of these precipitates on hardening and softening processes of dilute ternary Al-0.2wt.%Sc-0.1wt.%Zr alloy was investigated. Behaviour of two differently prepared alloys (mold cast and prepared by powder metallurgy – PM) was investigated in as-prepared and in cold rolled state. Both alloys exhibit the same peak age hardening, PM one reaches it already during extrusion at 350°C. Both cold rolled alloys are highly resistant against recovery, which proceeds without rapid hardness decrease at high temperatures. Evolution of hardness agrees well with that of resistivity and with TEM observation.

2007 ◽  
Vol 550 ◽  
pp. 289-294
Author(s):  
Suk Hoon Kang ◽  
Jae Hyung Cho ◽  
Joon Sub Hwang ◽  
Jong Soo Cho ◽  
Yong Jin Park ◽  
...  

Cold drawn gold wires are widely applied in electronic packaging process to interconnect micro-electronic components. They basically provides a conducting path for electronic signal transfer, and experience thermo-mechanical loads in use. The mechanical stability of drawn gold wires is a matter of practical concern in the reliable functioning of electronic devices. It is known that mechanical properties of materials are deeply related to the microstructure. With appropriate control of deformation and heat processes, the mechanical properties of final products, such as tensile strength and elongation can be improved. Severe plastic deformation by torsion usually contributes to grain refinement and increment of strength. In this study, microstructure variations with torsion strain followed by drawing and heat treatment were investigated. Analyses by focused ion beam (FIB) and electron backscattered diffraction (EBSD) were carried out to characterize the effect of deformation and heat treatment on the drawn gold wires. Pattern quality of EBSD measurements was used as a quantitative measure for plastic deformation.


2020 ◽  
Vol 993 ◽  
pp. 194-202
Author(s):  
Ying Ze Meng ◽  
Jian Min Yu ◽  
Zhi Min Zhang ◽  
Yao Jin Wu ◽  
Zheng Shi

Severe plastic deformation can be produced by repetitive upsetting-extrusion process. Using the repetitive upsetting-extrusion (RUE) process at decreasing temperature, the Mg-12.0Gd-4.5Y-2.0Zn-0.4Zr (wt %) alloy was deformed by different RUE passes and then heat treated. The microstructure, texture and mechanical properties of the alloy were compared and analyzed. The results demonstrate that with the increase of deformation passes, the coarse grains of the alloy decreased, the dynamic recrystallization fraction increased, and the dynamic recrystallized grains phagocytized the original grains. This can promote the continuous refinement of the grains and the microstructure uniformity. The maximum texture intensity of the (0001) basal plane decreased significantly with the increase of processing passes and the dispersion degree of pole figure increased. The orientation of dynamic recrystallized grains was randomly distributed to weaken texture. Due to the refinement of microstructure and the weakening of texture, the tensile strength and yield strength of the alloy obviously increased at room temperature. The mechanical properties of the alloy reached the highest after 3 passes and heat treatment.


2021 ◽  
Vol 43 (1) ◽  
pp. 1
Author(s):  
Agus Pramono ◽  
Suryana Suryana ◽  
Alfirano Alfirano ◽  
A. Ali Alhamidi ◽  
Adhitya Trenggono ◽  
...  

AbstrakProses produksi dengan menggunakan metode pengerjaan logam konvensional seringkali sulit terutama untuk produk masif, dimana peralatan dan produk seperti gaya dan tekanan tinggi diperlukan. Keterbatasan ini bisa diatasi dengan menggunakan teknologi terbaru yaitu severe plastic deformation (SPD), dengan metode spesifiknya yaitu equal channel angulatr pressing (ECAP). Perkembangan ECAP sudah mencapai tahap aplikasi produk, salah satu pengembangan metodenya yaitu model parallel channel, atau disebut ECAP-PC. Dalam aplikasi pembuatan komponen, diperlukan proses perlakuan panas material, bertujuan untuk mengubah sifat material. Perlakuan panas yang sesuai diantaranya adalah proses pelunakan anealling untuk pengerjaan komponen dan perlakuan panas jenis T6; artificial aging/age-hardening sebagai proses akhir, untuk penerapan aplikasi tertentu. Serbuk aluminium (Al) dengan campuran zirconium (Zr) diaktivasi secara mekanis menggunakan ball milling. Pencampuran menggunakan cairan etanol dan heptane untuk memudahkan pengeringan. Fraksi volume yang digunakan dalam komposit Al sebagai matriks dan Zr yaitu 97:3%. Serbuk komposit dilakukan penggilingan dengan proses ball milling menggunakan putaran 60 rpm selama 24 jam. Hasil perlakuan panas age-hardening menghasilkan sifat mekanik tertinggi sebesar 144-222 HV/1406-2177 MPa dibanding dengan jenis annealing yaitu 31-46 HV/301-449 MPa. Hal ini sesuai dengan tujuan dari perlakuan panas yaitu untuk menurunkan sifat mekanik agar material mudah diproses. AbstractThe production of conventional metalworking methods is often difficult especially for massive products, where equipment and products such as high force and pressure are required. This limitation can be overcome by using the latest technology, namely severe plastic deformation (SPD). By specific method, namely Equal Channel Angular Pressing (ECAP). The development of ECAP has reached the product application stage, one of the methods development is parallel channel model, or called ECAP-PC. Application of component manufacturing requires a material heat treatment process, aims to change the properties of the material. Suitable heat treatments include the annealing softening process for component work and the T6 type heat treatment; artificial aging/age-hardening as a finishing process for the application of certain applications. Aluminum (Al) powder and zirconium (Zr), mixture were activated mechanically by ball milling. Mixing processed using liquid ethanol and heptane for easy drying. The volume fraction used in the Al composite as a matrix and Zr is 97: 3%. The composites powder was milled by ball milling used a 60 rpm rotation for 24 hours. The results of age-hardening heat treatment produced the highest mechanical properties of 144-222 HV / 1406-2177 MPa compared to the type of annealing, namely 31-46 HV / 301-449 MPa. This is in accordance with the purpose of heat treatment, namely to reduce mechanical properties so that the material is easy to process.


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1953 ◽  
Vol 2 (12) ◽  

Abstract ALUMINUM 62S is a magnesium silicide type of wrought aluminum alloy with high resistance to fresh and salt water corrosion. It responds to age hardening heat treatment for high mechanical properties. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-11. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1969 ◽  
Vol 18 (4) ◽  

Abstract ALUMINUM 6062 is a magnesium silicide type of wrought aluminum alloy having good mechanical properties combined with high resistance to fresh and salt water corrosion. It responds to age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bearing strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-186. Producer or source: Aluminum Company of America.


2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


Sign in / Sign up

Export Citation Format

Share Document