Deformation and Heat Treatment of Cold Drawn Gold

2007 ◽  
Vol 550 ◽  
pp. 289-294
Author(s):  
Suk Hoon Kang ◽  
Jae Hyung Cho ◽  
Joon Sub Hwang ◽  
Jong Soo Cho ◽  
Yong Jin Park ◽  
...  

Cold drawn gold wires are widely applied in electronic packaging process to interconnect micro-electronic components. They basically provides a conducting path for electronic signal transfer, and experience thermo-mechanical loads in use. The mechanical stability of drawn gold wires is a matter of practical concern in the reliable functioning of electronic devices. It is known that mechanical properties of materials are deeply related to the microstructure. With appropriate control of deformation and heat processes, the mechanical properties of final products, such as tensile strength and elongation can be improved. Severe plastic deformation by torsion usually contributes to grain refinement and increment of strength. In this study, microstructure variations with torsion strain followed by drawing and heat treatment were investigated. Analyses by focused ion beam (FIB) and electron backscattered diffraction (EBSD) were carried out to characterize the effect of deformation and heat treatment on the drawn gold wires. Pattern quality of EBSD measurements was used as a quantitative measure for plastic deformation.

2007 ◽  
Vol 567-568 ◽  
pp. 357-360 ◽  
Author(s):  
M. Kolář ◽  
Vladivoj Očenášek ◽  
J. Uhlíř ◽  
Ivana Stulíková ◽  
Bohumil Smola ◽  
...  

The influence of plastic deformation and heat-treatment on the precipitation of Al3(Sc, Zr) particles and the effect of these precipitates on hardening and softening processes of dilute ternary Al-0.2wt.%Sc-0.1wt.%Zr alloy was investigated. Behaviour of two differently prepared alloys (mold cast and prepared by powder metallurgy – PM) was investigated in as-prepared and in cold rolled state. Both alloys exhibit the same peak age hardening, PM one reaches it already during extrusion at 350°C. Both cold rolled alloys are highly resistant against recovery, which proceeds without rapid hardness decrease at high temperatures. Evolution of hardness agrees well with that of resistivity and with TEM observation.


2017 ◽  
Vol 131 (5) ◽  
pp. 1336-1340 ◽  
Author(s):  
A. Kováčová ◽  
T. Kvačkaj ◽  
R. Kočiško ◽  
L. Dragošek ◽  
L. Lityńska-Dobrzyńska

2018 ◽  
Vol 275 ◽  
pp. 134-146
Author(s):  
Stanislav Rusz ◽  
Ondřej Hilšer ◽  
Stanislav Tylšar ◽  
Lubomír Čížek ◽  
Tomasz Tański ◽  
...  

The technology of structure refinement in materials with the aim of achieving substantial mechanical properties and maintaining the required plasticity level is becoming increasingly useful in industrial practice. Magnesium alloys are very progressive materials for utilization in practice thanks to their high strength-to-weight ratios (tensile strength/density). The presented paper analyses the effect of the input heat treatment of the AZ31 alloy on the change of structure and strength properties through the process of severe plastic deformation (SPD), which finds an increasing utilization, especially in the automotive and aviation industry. For the study of the influence of the SPD process (ECAP method) on the properties of the AZ31 alloy, two types of thermal treatment of the initial state of the structure were selected. The analysis of the structure of the AZ31 alloy was performed in the initial state without heat treatment and subsequently after heat treatment. In the next part, the influence of the number of passes on the strengthening curves was evaluated. Mechanical properties of the AZ31 alloy after ECAP were evaluated by hardness measurement and completed by structure analysis.


2018 ◽  
Vol 275 ◽  
pp. 81-88
Author(s):  
Monika Karoń ◽  
Marcin Adamiak

The purpose of this paper is to present the microstructure and mechanical behavior of 6060 aluminum alloy after intense plastic deformation. Equal Channel Angular Pressing (ECAP) was used as a method of severe plastic deformation. Before ECAP part of the samples were heat treated to remove internal stresses in the commercially available aluminium alloy. The evolution of microstructure and tensile strength were tested after 1, 3, 6 and 9 ECAP passes in annealed and non annealed states. It was found that intensely plastically deformed refined grains were present in the tested samples and exhibited increased mechanical properties. Differences were noted between samples without and after heat treatment


2020 ◽  
Vol 312 ◽  
pp. 235-243
Author(s):  
Lev Aleksandrovich Ivanov ◽  
Tatiana P. Kaminskaya ◽  
Irina Semenovna Tereshina ◽  
Vladislav Davydov ◽  
Vladimir V. Popov ◽  
...  

Magnetic force microscopy (MFM) and magnetometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to study the magnetic and structural properties of the (Nd,Pr)-Fe–B and (Nd,Ho)-(Fe,Co)-B alloys. The alloys are synthesized using an arc or induction furnaces. The nanocrystalline state of the (Nd,Ho)-(Fe,Co)-B alloys is reached by two techniques, namely, melt spinning (MS) and severe plastic deformation (SPD). Hydrogenation and multistage treatment of (Nd,Ho)-(Fe,Co)-B alloys, which includes severe plastic deformation of melt-quenched ribbons and subsequent heat treatment, is also used. The surface morphology and domain structure of samples are studied. These pictures are used to interpret the observed magnetic hysteresis loops of the samples. It was found that multistage treatment allows one to obtain samples with higher values of coercivity due to the formation of a special microstructure with oval grain (the aspect ratio equal to ∼ 3).


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1056 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Nicole Wielki ◽  
Daniel Meyer ◽  
Axel von Hehl

As part of a novel method for evolutionary material development, particle-oriented peening is used in this work to characterize 100Cr6 (AISI 52100) microparticles that were heat-treated by means of a differential scanning calorimeter (DSC). The plastic deformation of the samples in particle-oriented peening is correlated with the microstructural properties considering different heat-treatment variations. While the heating rate was kept constant (10 K/min) for all heat treatments, different heating temperatures (500 °C, 800 °C, 1000 °C and 1100 °C) were realized, held for 20 min and then cooled down at a rate of 50 K/min. Thereby, microstructural states with different (mechanical) properties are generated. For validation, microsections of the particles were analyzed and additional universal microhardness measurements (UMH) were performed. It could be shown that the quickly assessable plastic deformation descriptor reacts sensitively to the changes in the hardness due to the heat treatment.


Sign in / Sign up

Export Citation Format

Share Document