scholarly journals Perlakuan Panas Komposit berbasis Aluminium/ Zirconium Hasil Equal Channel Angular Pressing (ECAP) - Paralel Channel

2021 ◽  
Vol 43 (1) ◽  
pp. 1
Author(s):  
Agus Pramono ◽  
Suryana Suryana ◽  
Alfirano Alfirano ◽  
A. Ali Alhamidi ◽  
Adhitya Trenggono ◽  
...  

AbstrakProses produksi dengan menggunakan metode pengerjaan logam konvensional seringkali sulit terutama untuk produk masif, dimana peralatan dan produk seperti gaya dan tekanan tinggi diperlukan. Keterbatasan ini bisa diatasi dengan menggunakan teknologi terbaru yaitu severe plastic deformation (SPD), dengan metode spesifiknya yaitu equal channel angulatr pressing (ECAP). Perkembangan ECAP sudah mencapai tahap aplikasi produk, salah satu pengembangan metodenya yaitu model parallel channel, atau disebut ECAP-PC. Dalam aplikasi pembuatan komponen, diperlukan proses perlakuan panas material, bertujuan untuk mengubah sifat material. Perlakuan panas yang sesuai diantaranya adalah proses pelunakan anealling untuk pengerjaan komponen dan perlakuan panas jenis T6; artificial aging/age-hardening sebagai proses akhir, untuk penerapan aplikasi tertentu. Serbuk aluminium (Al) dengan campuran zirconium (Zr) diaktivasi secara mekanis menggunakan ball milling. Pencampuran menggunakan cairan etanol dan heptane untuk memudahkan pengeringan. Fraksi volume yang digunakan dalam komposit Al sebagai matriks dan Zr yaitu 97:3%. Serbuk komposit dilakukan penggilingan dengan proses ball milling menggunakan putaran 60 rpm selama 24 jam. Hasil perlakuan panas age-hardening menghasilkan sifat mekanik tertinggi sebesar 144-222 HV/1406-2177 MPa dibanding dengan jenis annealing yaitu 31-46 HV/301-449 MPa. Hal ini sesuai dengan tujuan dari perlakuan panas yaitu untuk menurunkan sifat mekanik agar material mudah diproses. AbstractThe production of conventional metalworking methods is often difficult especially for massive products, where equipment and products such as high force and pressure are required. This limitation can be overcome by using the latest technology, namely severe plastic deformation (SPD). By specific method, namely Equal Channel Angular Pressing (ECAP). The development of ECAP has reached the product application stage, one of the methods development is parallel channel model, or called ECAP-PC. Application of component manufacturing requires a material heat treatment process, aims to change the properties of the material. Suitable heat treatments include the annealing softening process for component work and the T6 type heat treatment; artificial aging/age-hardening as a finishing process for the application of certain applications. Aluminum (Al) powder and zirconium (Zr), mixture were activated mechanically by ball milling. Mixing processed using liquid ethanol and heptane for easy drying. The volume fraction used in the Al composite as a matrix and Zr is 97: 3%. The composites powder was milled by ball milling used a 60 rpm rotation for 24 hours. The results of age-hardening heat treatment produced the highest mechanical properties of 144-222 HV / 1406-2177 MPa compared to the type of annealing, namely 31-46 HV / 301-449 MPa. This is in accordance with the purpose of heat treatment, namely to reduce mechanical properties so that the material is easy to process.

2009 ◽  
Vol 67 ◽  
pp. 53-58
Author(s):  
V. Anil Kumar ◽  
M.K. Karthikeyan ◽  
Rohit Kumar Gupta ◽  
P. Ramkumar ◽  
P.P. Sinha

Severe plastic deformation processes (SPD) are gaining importance as advanced materials processing techniques and hold immense potential in obtaining ultra fine-grained high strength materials. Among the SPD techniques, Equal channel angular pressing (ECAP) has its own merits to produce materials with ultra fine grains in bulk with better mechanical properties. The material deforms with high level of plastic strain inside the channel resulting in grain refinement of the output material with improvement in mechanical properties. A very viable die configuration was conceptualized and die was made with 1200 channel angle. Processing of 25 mm dia. of Al alloy AA2219 at room temperature was successfully carried out and grain refinement was observed. The mechanism of grain refinement has been studied using optical and transmission electron microscopy (TEM). It was observed that low energy dislocation structure (LEDS) forms concurrently with sub-grain structure due to dislocation rearrangements, which provide stability to the evolving sub-grain structure. Dislocation mobility is hindered by the presence of precipitates and / or intermetallic dispersoids present in the matrix and results in presence of dislocations in grain interiors. The pile up of dislocations at intermetallic dispersoids was confirmed from the dark field TEM micrographs. Present paper describes the experimental procedure and followed to attain severe plastic deformation through ECAP. Increase in hardness as well as refinement in the grain size after 5-passes have been discussed in light of extensive optical and TEM. The mechanisms of grain refinement to achieve nano-grained structure and strengthening accrued from the grain refinement through ECAP has been discussed.


2008 ◽  
Vol 584-586 ◽  
pp. 29-34 ◽  
Author(s):  
Radik R. Mulyukov ◽  
Ayrat A. Nazarov ◽  
Renat M. Imayev

Deformation methods of nanostructuring (DMNs) of materials are proposed to classify into severe plastic deformation (SPD) and mild plastic deformation (MPD) methods according to fundamentally different low- and high-temperature grain refinement mechanisms they exploit. A general analysis of the fundamentals and nanostructuring efficiency of three most developed DMNs, high pressure torsion (HPT), equal-channel angular pressing (ECAP), and multiple isothermal forging (MIF) is done with a particular attention to ECAP and MIF. It is demonstrated that MIF is the most efficient method of DMNs allowing one to obtain the bulkiest nanostructured samples with enhanced mechanical properties.


2008 ◽  
Vol 584-586 ◽  
pp. 80-85 ◽  
Author(s):  
Georgy I. Raab ◽  
Ruslan Valiev ◽  
Dmitriy Gunderov ◽  
Terry C. Lowe ◽  
Amit Misra ◽  
...  

A new technique of continuous severe plastic deformation (SPD)-processing, i.e. ECAP (equal channel angular pressing)-Conform is applied for the first time to produce long-length rods of commercial purity Ti with ultrafine-grained structure. The paper reports on the results of investigation of the microstructure and mechanical properties of Ti rods processed by ECAPConform and the following wire drawing.


2015 ◽  
Vol 771 ◽  
pp. 252-256 ◽  
Author(s):  
Agus Pramono ◽  
Lauri Kollo ◽  
Renno Veinthal ◽  
Kaspar Kallip ◽  
Jaana Kateriina Gomon

During the last decade Equal Channel Angular Pressing (ECAP) has emerged as a widely known procedure for the fabrication of ultrafine grained metals and alloys. This review examines recent developments related to the use of ECAP for grain refinement. In the current study the part of capsules wrapper for powder material to be compressed where the powder AA6061 was wrapped in copper sheet and heated at a temperature of 400 OC in hot pressed under the pressure of 400 MPa. Afterward the powder in solid condition was cooled in the air and then does analysis characterization. The sample results of AA6061 are ECAP as is and heat treatment with type Anneal and Artificial Aging (T6) where heat treatment is heated at a temperature of 530 °C for 1 h followed by heating at a temperature of 100 °C for one day and the other for heating at a temperature of 415°C for 2.5 hours followed by heating at a temperature of 177 °C for 8 hours. This paper explains the characteristics of each sample where analyses are based on the mechanism of properties to determine how much change of mechanical properties and microstructure. Heat treatment effect on grain coarsening so that the mechanical properties can be engineered.


2012 ◽  
Vol 622-623 ◽  
pp. 705-709 ◽  
Author(s):  
U. Mohammed Iqbal ◽  
V.S. Senthil Kumar

Severe plastic deformation is one of the emerging and promising techniques applied to bulk materials to produce fine grain structure with attractive properties. This study aims to investigate the effect of extrusion parameters like extrusion temperature, number of passes on the equal channel angular pressing and twist extrusion forming behavior of AA7075-T6 Aluminum alloy by hot extrusion process. AA7075-T6 samples of 70x28x18 mm cross sections extruded by equal channel angular pressing and twist extrusion process was subjected to microstructure analysis, hardness and tensile tests in order to determine their mechanical properties. As a result of the experiments, it was determined that twist extrusion leads to more grain refinement at high temperatures with more number of passes compared to equal channel angular pressing. SEM micrographs show that there is severe orientation of the grains facilitated by the extrusion process which enhances the strength. The dense banding of the grains had effected in marginal hardness enhancement in the matrix of the specimens processed by twist extrusion and equal channel angular extrusion process.


2010 ◽  
Vol 667-669 ◽  
pp. 943-948 ◽  
Author(s):  
Veronika Polyakova ◽  
Irina P. Semenova ◽  
Ruslan Valiev

This work is devoted to enhancement of strength and ductility of the Ti-6Al-7Nb ELI alloy, which is less harmful from medical point of view for human body in comparison to Ti-6Al-4V. It has been demonstrated that formation of an ultrafine-grained structure in the alloy with the help of equal-channel angular pressing in combination with heat and deformation treatments allows reaching high strength (UTS = 1400 MPa) and sufficient ductility (elongation 10 %).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
C. J. Luis ◽  
R. Luri ◽  
J. León ◽  
I. Puertas ◽  
D. Salcedo ◽  
...  

This work presents a study related to the achievement of a nanometric structure in AA3103, employing severe plastic deformation processes (SPD), in this case equal channel angular pressing (ECAP). The changes in the mechanical properties and in the microstructure of AA3103 were studied after being processed by ECAP. Subsequently, scanning electron microscopy was used to determine the evolution of the microstructure after different thermal treatments on the material processed by this severe plastic deformation process. Furthermore, a more profound knowledge of the changes in the mechanical properties of this aluminium alloy was obtained. It was demonstrated that with different appropriate combinations of thermal treatments and ECAP processing, it is possible to significantly improve the mechanical properties through obtaining submicrometric grain size structures.


2015 ◽  
Vol 813-814 ◽  
pp. 161-165
Author(s):  
M. Sadhasivam ◽  
T. Pravin ◽  
S. Raghuraman

The need for super-plasticity and high strength leads to the development of Severe Plastic Deformation technique. The strength of the material is directly dependent upon the grain size of the material. So, there is a need for producing Ultra-Fine Grain microstructure (UFG). UFG material is the material with very small grain size in the range of sub-micrometre. Application of severe plastic deformation, imparts extremely high strain. Equal channel angular pressing (ECAP) is a severe plastic deformation process in which the metal specimen is pressed through an angular channel of equal cross section. The material is subjected to shear deformation and strain is imparted in the specimen. Geometric parameters such as channel angle and corner angle play a major role in grain refinement. Aluminium (Al) specimens are subjected to undergo severe plastic deformation. Since, the strength of Al is not high, other materials are added in order to enhance its mechanical properties by matrix work hardening. Copper (Cu) along with Al shows increase in its strength and also in hardness. An attempt is made with Aluminium and copper, blended in the ratio 95:5 by weight with the main objective to study the Tensile strength, Hardness and Percentage Elongation properties of the specimen.


2013 ◽  
Vol 789 ◽  
pp. 373-378 ◽  
Author(s):  
Suryadi Suryadi ◽  
R.A.M. Napitupulu ◽  
Dedi Priadi ◽  
Amin Suhadi ◽  
Eddy S. Siradj

Severe plastic deformation (SPD) using various pass number of Equal Channel Angular Pressing (ECAP) experiment and followed heating at 400°C has been done for rod brass Cu-Zn 70/30 to investigate the operation on microstructure and hardness of the alloy. Optical microscopy and SEM are used to examine the microstructure change. Mechanical testing such as macro and micro hardness test is used in order to examine the change of mechanical properties. The grain structure of the alloy was refined from 34 μm to 2 μm after 4 passes ECAP and increased to 4 μm after post heating. The hardness of the alloy significantly increased from 78 Hv to 235 Hv after 4 passes and decreased to 135 Hv after post heating after ECAP. The microstructure and mechanical properties of the alloy was homogenous after 4 passes ECAP because the strain was found more homogenous.


Sign in / Sign up

Export Citation Format

Share Document