Finite Element Analysis on Microstructure Evolution of Hot Ring Rolling Process

2008 ◽  
Vol 575-578 ◽  
pp. 1455-1460 ◽  
Author(s):  
Zhi Chao Sun ◽  
He Yang ◽  
Xin Zhe Ou

Hot ring rolling (HRR) is a 3D unsteady-state and coupled thermo-mechanical process, the metal undergoes complicated unequal deformation and microstructure evolution. In this paper a 3D rigid-plastic and coupled thermo-mechanical FEM model for hot ring rolling was developed based on DEFORM3D platform, taking dynamic recrystallization (DRX) volume fraction, DRX grain size, recystallization volume fraction and average grain size as objects, the mechanism of material microstructure evolution and distributions in HRR process are thoroughly studied. The results show that: with the HRR progressing, the DRX volume fraction, volume fraction, DRX grain size and average grain size have the similar distributing characteristic, and the distribution zones expand from a small local area into the whole ring strip, then diffuse to the mid-layer of ring with small deformation, their distributions become more uniform. Meanwhile with increase of deformation, the values of the DRX volume fraction and recrystallization volume fraction augment, i.e. the degree of recystallization increases. The DRX grain size also augments due to local high temperature, while the average grain size decreases. In general during HRR process the distributions of DRX volume fraction, recrystallization volume fraction, DRX grain size, and average grain size are ununiform due to unequal deforming in HRR process.

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Haijun Li ◽  
Tianxiang Li ◽  
Meina Gong ◽  
Zhaodong Wang ◽  
Guodong Wang

Hot-core heavy reduction rolling (HHR2) is an innovative technology, where a two-high rolling mill is installed after the solidification end of a strand, which can significantly eliminate the core defects of the slab. The mill exhibits a heavy reduction ratio, which promotes the dynamic recrystallization (DRX) of the slab. This study aims to optimize the parameters of the HHR2 process considering the effect of DRX on microstructure homogeneity. The secondary development of commercial software DEFORM-3D is conducted to calculate the deformation and DRX behavior of HHR2 for different reduction ratios. The parameters of DRX volume fraction and DRX grain size are compared, and finer DRX grains are obtained when the greater reduction ratios are conducted in HHR2. Then, corresponding to the deformation conditions in the HHR2, the thermal–mechanical simulations are conducted on the Gleeble3800 to obtain the average grain sizes before and after this process. When the reduction amount increases from 20 mm to 50 mm, the difference of average grain size between the core and the surface reduces by 52%. In other words, appropriately enhancing the reduction ratio is helpful to reduce the average austenite grain and promote the microstructure uniformity of the slab. These results provide some valuable information on the design of deformation parameters for HHR2.


2010 ◽  
Vol 638-642 ◽  
pp. 223-228 ◽  
Author(s):  
Jong Taek Yeom ◽  
Jeoung Han Kim ◽  
Jae Keun Hong ◽  
Nho Kwang Park ◽  
Chong Soo Lee

Microstructure evolution during ring rolling process of a large-scale Ti-6Al-4V ring was investigated with the combined approaches of three dimensional finite element method (FEM) simulation and microstructure prediction model. A microstructure prediction model was established by considering the volume fractions and grain size of  and  phases varying with process variables, and grain growth. In order to perform FE simulation for ring rolling process of Ti-6Al-4V alloy, a constitutive equation was generated by utilizing the flow stress data obtained from hot compression tests at different temperature and strain rate conditions. The volume fraction and grain size of  and  phases during ring rolling were calculated by de-coupled approach between FEM analysis and microstructure prediction model. The prediction results were compared with the experimental ones. Our proposed microstructure simulation module was useful for designing hot forming process of Ti-6Al-4V alloy


2013 ◽  
Vol 762 ◽  
pp. 354-359 ◽  
Author(s):  
Thomas Henke ◽  
Gerhard Hirt ◽  
Markus Bambach

Ring rolling is an incremental bulk forming process. Hence, the process consists of a large number of alternating deformations and dwell steps. For accurate calculations of material flow and thus ring geometry and rolling forces in hot ring rolling processes, it seems necessary to consider material softening due to static and post dynamic recrystallization which could occur between two deformation steps. In addition, due to the large number of cycles, the modeling results, especially the prediction of grain size, can easily be affected by uncertainties in the input data. However, for small rings and ring material with slow recrystallization kinetics, the interpass times can be short compared to the softening kinetics and the effect of softening can be so small, that microstructure evolution and the description of the materials flow behavior can be de-coupled. In this paper, a semi-empirical JMAK-based model for a stainless steel (1.4301/ X5CrNi18-9/ AISI304) is presented and evaluated by the use of experiments and other investigations published in [1],[2]. Finite Element (FE) simulations of a ring rolling process with a high number of ring revolutions and thus multiple, incremental forming steps were conducted based on ring rolling experiments. The FE simulation results were validated with the experimentally derived rolling force and evolution of ring diameter. The microstructure evolution was calculated in a post processing step considering the investigated evolution of strain and temperature. In this calculation the interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been considered. Both, the calculated final microstructure and the evolution of rolling force and ring geometry calculated stand in good agreement with the experimental investigations.


2014 ◽  
Vol 998-999 ◽  
pp. 545-548 ◽  
Author(s):  
Łukasz Łach ◽  
Dmytro Svyetlichnyy

Properties of traditional materials including steels can be improved by using the prediction and control of microstructure evolution in technological processes. Models of microstructure evolution, which take into account the technological conditions, allow to optimize the process in view of final product properties. A multiscale model of microstructure evolution have been developed and adopted for simulation of the shape rolling process. The model contains module based on finite element method (FEM) for simulation of technological processes and cellular automata (CA) module for simulation of microstructure evolution. Design and selection of grooves and simulations of rolling process in macro scale are realized by FEM. The modeling results obtained by FEM are transferred to CA and used as input data. The results of simulations of microstructure evolution can be presented as snapshots of microstructure at arbitrary time, changes of average grain size, a grain size distribution, recrystallization fraction and flow stress during the process. The results of microstructure evolution obtained by FCA for 5mm round bars rolled in diamond and oval grooves are presented in the paper.


2016 ◽  
Vol 716 ◽  
pp. 352-359
Author(s):  
Aleksey Reshetov ◽  
Olga Bylya ◽  
Michal Gzyl ◽  
Malgorzata Rosochowska ◽  
Paul Blackwell

The present study details the results of finite element analysis (FEA) based predictions for microstructure evolution in ATI 718Plus® alloy during the hot deformation process. A detailed description of models for static grain growth and recrystallisation is provided. The simulated average grain size is compared with those experimentally measured in aerofoil parts after forging trials. The proposed modified JMAK model has proved to be valid in the main body of the forging. The results predicted for the surface are less accurate. The recrystallised grain size on the surface is smaller than in the centre of the part which corresponds to the experimental results and reflects the main trend.


2012 ◽  
Vol 445 ◽  
pp. 231-236
Author(s):  
Dyi Cheng Chen ◽  
Bao Yan Lai ◽  
Ci Syong You

The bicycle is not only a pollution-free method of transportation, but also has sport and recreation functions. Therefore, the bicycle attracted attention in now society gradually. This study uses the rigid-plastic finite element (FE) DEFORMTM software to investigate the plastic deformation behavior of a 7075 aluminum alloy workpiece as it is formed through a ring rolling die. This study systematically investigates the relative influences of ring rolling velocity, entering velocity, and workpiece temperature under various ring rolling forming conditions. The effective strain, effective stress, and workpiece damage distribution in the ring rolling process are also investigated. Results confirm the suitability of the proposed design process, which allows a ring rolling manufacturer to achieve a perfect design during finite element analysis.


2014 ◽  
Vol 922 ◽  
pp. 568-573
Author(s):  
Victor Carretero Olalla ◽  
N. Sanchez Mouriño ◽  
Philippe Thibaux ◽  
Leo Kestens ◽  
Roumen H. Petrov

Control of ductile fracture propagation is one of the major concerns for pipeline industry, particularly with the increasing demand of new control rolled steel grades required to maintain integrity at high operational pressures. The objective of this research is to understand which microstructural features govern crack propagation, and to analyse the effect of two of them (average grain size, and volume fraction of pearlite). The main disadvantage during classical Charpy test was to discriminate the crack initiation and propagation energy during fracture of a notched sample. The initiation appears to be caused by the stress state in the neighbouring of Ti-containing precipitates or pearlite particles (no presence of M/A constituents or MnS inclusions was detected in the evaluated grades), propagation-arrest of the crack is assumed to play the main role concerning the control of fracture. Our approach to characterize the fracture resistance is to measure the energy absorbed during the crack propagation stage by means of load-displacement curves obtained via instrumented Charpy test. It was observed that the energy absorbed during crack propagation is not influenced by the average grain size but by the fraction and the morphological (banded-not banded) distribution of second pearlitic phase. This suggests that a different approach to characterize the heterogeneities in grain size clustering might be followed to correlate the energy measured during crack propagation and the morphological features of the steel.


2013 ◽  
Vol 275-277 ◽  
pp. 1833-1837
Author(s):  
Ke Lu Wang ◽  
Shi Qiang Lu ◽  
Xin Li ◽  
Xian Juan Dong

A Johnson-Mehl-Avrami-Kolmogorov (JMAK)-model was established for dynamic recrystallization in hot deformation process of 52100 steel. The effects of hot deformation temperature, true strain and strain rate on the microstructural evolution of the steel were physically studied by using Gleeble-1500 thermo-mechanical simulator and the experimental results were used for validation of the JMAK-model. Through simulation and experiment, it is found that the predicted results of DRX volume fraction, DRX grain size and average grain size are in good agreement with the experimental ones.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 884
Author(s):  
Hongbin Zhang ◽  
Chengcai Zhang ◽  
Baokun Han ◽  
Kuidong Gao ◽  
Ruirui Fang ◽  
...  

The influence of electropulsing treatment (EPT) parameters on the static recrystallization (SRX) microstructure in a cold-deformed Ni-based superalloy was investigated. During EPT, both the volume fraction of SRX grains and the average grain size increased with the increasing EPT temperature, which was attributed to the thermal effect and athermal effect induced by EPT. The mobility of SRX grain boundaries was promoted at the higher temperature due to the thermal effect, while the nucleation rate would be increased by EPT through decreasing the thermodynamic barrier. The formation of parallel dislocations caused by electron wind force could also play an indirect role in promoting SRX process. Moreover, the volume fraction of SRX grains increased significantly with the extension of EPT time at 700 °C, while the EPT time had a trivial effect on the average grain size. In addition, the sufficient deformation was essential to the occurrence of SRX behavior during EPT, and the localized Joule heating effect could promote the SRX behavior in the samples with the larger strains. Besides that, the influence of twining and carbides on the SRX behaviors was also investigated.


Sign in / Sign up

Export Citation Format

Share Document