Mechanical and Microstructural Characterization of Al-6082 Ultrafine-Grained Alloys Processed by ECAP Combined with Traditional Forming Techniques

2008 ◽  
Vol 589 ◽  
pp. 111-116 ◽  
Author(s):  
György Krállics ◽  
Arpad Fodor ◽  
Jenő Gubicza ◽  
Z. Fogarassy

An Al-6082 alloy was subjected to equal channel angular pressing (ECAP) and subsequently to conventional forming methods such as shape rolling and rotary forging. The effect of different deformation techniques on the microstructure and the mechanical properties was studied. It was found that the shape rolling and rotary forging increased further the strength of ECAP-processed samples and induced a loss of ductility.

2008 ◽  
Vol 43 (23-24) ◽  
pp. 7409-7417 ◽  
Author(s):  
Matthias Hockauf ◽  
Lothar W. Meyer ◽  
Daniela Nickel ◽  
Gert Alisch ◽  
Thomas Lampke ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1678 ◽  
Author(s):  
Chun Chiu ◽  
Hong-Min Huang

Mg97Zn1Y2 (at %) alloy with a long period stacking ordered (LPSO) phase has attracted a great deal of attention due to its excellent mechanical properties. It has been reported that this alloy could be fabricated by warm extrusion of rapid solidified alloy powders. In this study, an alternative route combining mechanical milling and equal channel angular pressing (ECAP) was selected to produce the bulk Mg97Zn1Y2 alloy. Microstructural characterization, mechanical properties and corrosion behavior of the ECAP-compacted alloys were studied. The as-cast alloy contained α-Mg and LPSO-Mg12Zn1Y1 phase. In the as-milled powder, the LPSO phase decomposed and formed Mg24Y5 phase. The ECAP-compacted alloy had identical phases to those of the as-milled sample. The compacted alloy exhibited a hardness of 120 HV and a compressive yield strength of 308 MPa, which were higher than those of the as-cast counterpart. The compacted alloy had better corrosion resistance, which was attributed to the reduced volume fraction of the secondary phase resulting in lower microgalvanic corrosion in the compacted alloy. The increase in Y content in the α-Mg matrix also contributed to the improvement of corrosion resistance.


2006 ◽  
Vol 503-504 ◽  
pp. 763-768 ◽  
Author(s):  
V.V. Latysh ◽  
Irina P. Semenova ◽  
G.H. Salimgareeva ◽  
I.V. Kandarov ◽  
Yuntian T. Zhu ◽  
...  

This paper studies the effect of combined SPD treatment on microstructure and mechanical properties of semi-products out of CP Ti. The combined processing, consisting of equal-channel angular pressing and further thermomechanical treatment, produced ultrafine-grained rods out of Grade 2 CP Ti with a diameter of 6.5 mm and a length of up to 1 m. It was established that the formation of homogeneous ultrafine-grained structure in Ti rod with α-grain size of about 100 nm allowed to enhance yield stress by 200% in comparison with initial annealed state.


2008 ◽  
Vol 584-586 ◽  
pp. 80-85 ◽  
Author(s):  
Georgy I. Raab ◽  
Ruslan Valiev ◽  
Dmitriy Gunderov ◽  
Terry C. Lowe ◽  
Amit Misra ◽  
...  

A new technique of continuous severe plastic deformation (SPD)-processing, i.e. ECAP (equal channel angular pressing)-Conform is applied for the first time to produce long-length rods of commercial purity Ti with ultrafine-grained structure. The paper reports on the results of investigation of the microstructure and mechanical properties of Ti rods processed by ECAPConform and the following wire drawing.


2015 ◽  
Vol 771 ◽  
pp. 252-256 ◽  
Author(s):  
Agus Pramono ◽  
Lauri Kollo ◽  
Renno Veinthal ◽  
Kaspar Kallip ◽  
Jaana Kateriina Gomon

During the last decade Equal Channel Angular Pressing (ECAP) has emerged as a widely known procedure for the fabrication of ultrafine grained metals and alloys. This review examines recent developments related to the use of ECAP for grain refinement. In the current study the part of capsules wrapper for powder material to be compressed where the powder AA6061 was wrapped in copper sheet and heated at a temperature of 400 OC in hot pressed under the pressure of 400 MPa. Afterward the powder in solid condition was cooled in the air and then does analysis characterization. The sample results of AA6061 are ECAP as is and heat treatment with type Anneal and Artificial Aging (T6) where heat treatment is heated at a temperature of 530 °C for 1 h followed by heating at a temperature of 100 °C for one day and the other for heating at a temperature of 415°C for 2.5 hours followed by heating at a temperature of 177 °C for 8 hours. This paper explains the characteristics of each sample where analyses are based on the mechanism of properties to determine how much change of mechanical properties and microstructure. Heat treatment effect on grain coarsening so that the mechanical properties can be engineered.


Sign in / Sign up

Export Citation Format

Share Document