Influence of Beam Polarizations on Evaporative Laser Cutting Nonmetallic Materials within High Absorptance

2009 ◽  
Vol 626-627 ◽  
pp. 363-368
Author(s):  
Xiao Zhu Xie ◽  
J.G. Lu ◽  
Xin Wei ◽  
W. Hu

The three dimensional (3D) coupling model is set up for analyzing the energy reflection and absorption on the kerf using ray tracing method after the laser beam cutting nonmetallic materials with high absorptance through multiple reflections. The laser beam characterized by focused gauss beam and fresnel absorption on the kerf are taken into account. The influences of the polarization on the absorbed intensity both in the front and the two walls are also discussed. Results indicate the differences of absorptive intensity among the three polarized lights are relatively small compared to metal. Thus, the polarization has little effects on the kerf of nonmetallic materials with high absorptance. The experimental results also agree well with the theoretical analysis.

2014 ◽  
Vol 556-562 ◽  
pp. 3039-3042
Author(s):  
Xian Qiang Peng

GPS can’t detect the signal because of the cell complex environment in the outdoor and poor radio wave propagation conditions, so that the positioning result is not ideal. However, the positioning method using the ray tracing prediction of radio waves, the tracking point of the scene from all the source radiation, record the relevant parameters, and then positioned within the microcell environment can satisfy the demand. The principle of ray tracing was firstly introduced in this paper, then an outdoor positioning model was set up, finally, the corresponding simulation experiments was implemented to demonstrate the effectiveness of ray tracing positioning in the outdoor environments.


Author(s):  
L Chen ◽  
Y Yan ◽  
R Zhang

Weak focusing laser beams can guide micrometre-sized beads to direct-write two-dimensional patterns or three-dimensional structures. Applications based on laser guidance have been found in many fields including biological research areas. This paper discusses the effects of convection, which is the main disturbance during laser-guided transportation. The heat generated by optical absorption causes the convection flow, as observed in experiments. To investigate this convection flow, a finite element analysis (FEA) model was set up and computation under different heat load conditions was carried out. The results show that the convection flow velocity at the laser beam centre has a direct proportional relation to the incident power and varies with the position of the laser beam.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Majdi Salem ◽  
Mahamod Ismail ◽  
Norbahiah Misran

A 3D ray tracing simulator has been developed for indoor wireless networks. The simulator uses geometrical optics (GOs) to propagate the electromagnetic waves inside the buildings. The prediction technique takes into account multiple reflections and transmissions of the propagated waves. An interpolation prediction method (IPM) has been proposed to predict the propagated signal and to make the ray-tracing algorithm faster, accurate, and simple. The measurements have been achieved by using a single Wi-Fi network access point as a transmitter and a laptop as a receiver. Measured data had been collected at different positions in indoor environment and compared with predicted signals. The comparison of the predicted and measured received signals gave root mean square error of 2.96 dB and std. deviation of 2.98 dB.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 286 ◽  
Author(s):  
Ferdous Hossain ◽  
Tan Geok ◽  
Tharek Rahman ◽  
Mohammad Hindia ◽  
Kaharudin Dimyati ◽  
...  

Millimeter wave technology will be dominating the fifth-generation networks due to the clear advantage of higher frequency bands and hence wider spectrum. In this paper, the indoor radio wave propagation at 28 GHz is studied by developing an efficient three-dimensional ray tracing (ETRT) method. The simulation software based on the ETRT model has been verified by measurement data. The received signal strength indication and path loss have shown significant agreement between simulation and measurement. Compared with the conventional shooting bouncing ray tracing method, the proposed ETRT method has better agreement with measurement data.


Robotica ◽  
2000 ◽  
Vol 18 (4) ◽  
pp. 443-449 ◽  
Author(s):  
Raziel Riemer ◽  
Yael Edan

This paper evaluates the influence of target location on robot repeatability. An experiment was set up to analyze the effect of the three-dimensional target location on robot repeatability. An error-analysis model to determine repeatability based on the robot's kinematic model and known robot parameters was developed. Experimental results indicated that there was a significant statistical difference between repeatability at different locations in the workspace and that the height of the target point influenced repeatability. Experimental results tended to those derived from the error-analysis kinematic model. Hence, to determine the optimal target location, there is no need for extensive experimentation; instead, only a few target points can be sampled and compared to an error-analysis model.


Radio Science ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Houtao Zhu ◽  
Jun-ichi Takada ◽  
Kiyomichi Araki ◽  
Takehiko Kobayashi

Sign in / Sign up

Export Citation Format

Share Document