Crack Blunting through Lattice Dislocation Slip in Nanocrystalline and Ultrafine-Grained Materials

2009 ◽  
Vol 633-634 ◽  
pp. 55-62
Author(s):  
Ilya A. Ovidko ◽  
A.G. Sheinerman

The grain size effect on blunting of cracks in nanocrystalline and ultrafine-grained materials (UFG) is theoretically described. Within our description, lattice dislocations emitted from cracks are stopped at grain boundaries. The stress fields of these dislocations suppress further dislocation emission from cracks in nanocrystalline and UFG materials, and the suppression depends on grain size. The dependences of the number of dislocations emitted by a crack on grain size (ranging from 10 to 300 nm) in Cu and 3C-SiC (the cubic phase of silicon carbide) are calculated which characterize the grain size effect on crack blunting that crucially influences ductility of these materials.

2016 ◽  
Vol 850 ◽  
pp. 857-863 ◽  
Author(s):  
Yao Jiang ◽  
Jing Tao Wang ◽  
Yue Wang ◽  
Jian Yin

Cold rolling (CR) was conducted on coarse grained (CG) and ultrafine-grained (UFG) coppers, obtained by 1 and 8 passes in the equal channel angel pressing (ECAP), to investigate the effect of grain size on rolling texture. The microstructure was refined to UFG (~420 nm) with the ECAP pass increased to 8, while only band-like CG microstructure was observed in the 1 pass processed copper. The influence of the texture before CR could be excluded as the crystallographic texture kept similar for different ECAP pass. Pole figures (PFs) showed that the shear texture introduced by ECAP was replaced by rolling texture after CR. Furthermore, the rolling texture was a kind of classical copper-type for the CG copper, while a brass-type rolling texture was observed in the UFG copper. TEM results confirmed that the deformation nanotwins were only observed in the UFG copper, while the microstructure of CG copper was further compressed and subdivided. It indicated that the observed differences in rolling texture component and density might be contributed to the grain size effect which resulted in different deformation mechanism and grain subdivision behavior.


2013 ◽  
Vol 69 (5) ◽  
pp. 428-431 ◽  
Author(s):  
J.L. Sun ◽  
P.W. Trimby ◽  
F.K. Yan ◽  
X.Z. Liao ◽  
N.R. Tao ◽  
...  

2020 ◽  
Author(s):  
Kum-Ok Jang ◽  
Il-Hwan Kim ◽  
Il-Hun Kim ◽  
Kye-Ryong Sin ◽  
Chol-Jin Kim

2014 ◽  
Vol 95 ◽  
pp. 187-191 ◽  
Author(s):  
V. Lacaille ◽  
C. Morel ◽  
E. Feulvarch ◽  
G. Kermouche ◽  
J.-M. Bergheau

2016 ◽  
Vol 123 ◽  
pp. 90-94 ◽  
Author(s):  
G.M. Cheng ◽  
W.Z. Xu ◽  
Y.Q. Wang ◽  
A. Misra ◽  
Y.T. Zhu

2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


Sign in / Sign up

Export Citation Format

Share Document