The Processing of Ultrafine-Grained Materials Using High-Pressure Torsion

2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.

2021 ◽  
Vol 1016 ◽  
pp. 338-344
Author(s):  
Wan Ji Chen ◽  
Jie Xu ◽  
De Tong Liu ◽  
De Bin Shan ◽  
Bin Guo ◽  
...  

High-pressure torsion (HPT) was conducted under 6.0 GPa on commercial purity titanium up to 10 turns. An ultrafine-grained (UFG) pure Ti with an average grain size of ~96 nm was obtained. The thermal properties of these samples were studied by using differential scanning calorimeter (DSC) which allowed the quantitative determination of the evolution of stored energy, the recrystallization temperatures, the activation energy involved in the recrystallization of the material and the evolution of the recrystallized fraction with temperature. The results show that the stored energy increases, beyond which the stored energy seems to level off to a saturated value with increase of HPT up to 5 turns. An average activation energy of about 101 kJ/mol for the recrystallization of 5 turns samples was determined. Also, the thermal stability of the grains of the 5 turns samples with subsequent heat treatments were investigated by microstructural analysis and Vickers microhardness measurements. It is shown that the average grain size remains below 246 nm when the annealing temperature is below 500 °C, and the size of the grains increases significantly for samples at the annealing temperature of 600 °C.


Author(s):  
Mihaela Banu ◽  
Mitica Afteni ◽  
Alexandru Epureanu ◽  
Valentin Tabacaru

There are several severe plastic deformation processes that transform the material from microsized grains to the nanosized grains under large deformations. The grain size of a macrostructure is generally 300 μm. Following severe plastic deformation it can be reached a grain size of 200 nm and even less up to 50 nm. These structures are called ultrafine grained materials with nanostructured organization of the grains. There are severe plastic deformation processes like equal angular channel, high pressure torsion which lead to a 200 nm grain size, respectively 100 nm grain size. Basically, these processes have a common point namely to act on the original sized material so that an extreme deformation to be produced. The severe plastic deformation processes developed until now are empirically-based and the modeling of them requires more understanding of how the materials deform. The macrostructural material models do not fit the behavior of the nanostructured materials exhibiting simultaneously high strength and ductility. The existent material laws need developments which consider multi-scale analysis. In this context, the present paper presents a laboratory method to obtain ultrafine grains of an aluminum alloy (Al-Mg) that allows the microstructure observations and furthermore the identification of the stress–strain response under loadings. The work is divided into (i) processing of the ultrafine-grained aluminum alloy using a laboratory-scale process named in-plane controlled multidirectional shearing process, (ii) crystallographic analysis of the obtained material structure, (iii) tensile testing of the ultrafine-grained aluminum specimens for obtaining the true stress-strain behavior. Thus, the microscale phenomena are explained with respect to the external loads applied to the aluminum alloy. The proposed multi-scale analysis gives an accurate prediction of the mechanical behavior of the ultrafine-grained materials that can be further applied to finite element modeling of the microforming processes.


2014 ◽  
Vol 783-786 ◽  
pp. 2617-2622 ◽  
Author(s):  
Livia Raquel C. Malheiros ◽  
Roberto B. Figueiredo ◽  
Terence G. Langdon

High-Pressure Torsion (HPT) is widely used to refine the structure of metallic materials through the use of severe plastic deformation. This technique is used in this report to process different magnesium alloys using various processing conditions. The high hydrostatic pressure allows processing of these materials at room temperature without cracking. The structure was characterized and hardness distribution was determined at different areas of the processed samples. The results show significant structure refinement and increased hardness. The evolution of the structure and hardness depends on the alloying and HPT processing conditions.


2006 ◽  
Vol 519-521 ◽  
pp. 45-54 ◽  
Author(s):  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) has become important over the last decade because it is now recognized that it provides a simple procedure for producing fully-dense bulk metals with grain sizes lying typically in the submicrometer range. There are two major procedures for SPD processing. First, equal-channel angular pressing (ECAP) refers to the repetitive pressing of a metal bar or rod through a die where the sample is constrained within a channel bent through an abrupt angle at, or close to, 90 degrees. Second, high-pressure torsion (HPT) refers to the procedure in which the sample, generally in the form of a thin disk, is subjected to a very high pressure and concurrent torsional straining. Both of these processes are capable of producing metallic alloys with ultrafine grain sizes and with a reasonable degree of homogeneity. Furthermore, the samples produced in this way may exhibit exceptional mechanical properties including high strength at ambient temperature through the Hall-Petch relationship and a potential superplastic forming capability at elevated temperatures. This paper reviews these two procedures and gives examples of the properties of aluminum alloys after SPD processing.


2019 ◽  
Vol 25 (4) ◽  
pp. 230 ◽  
Author(s):  
Boris Straumal ◽  
Askar Kilmametov ◽  
Andrey Mazilkin ◽  
Olga Kogtenkova ◽  
Brigitte Baretzky ◽  
...  

<p class="AMSmaintext"><span lang="EN-GB">Severe plastic deformation (SPD) can induce various phase transformations. After a certain strain, the dynamic equilibrium establishes between defects production by an external force and their relaxation (annihilation). The grain size, hardness, phase composition etc. in this steady-state does not depend on the initial state of a material and is, therefore, equifinal. In this review we discuss the competition between precipitation and dissolution of precipitates, amorphization and (nano)crystallization, SPD-induced accelerated mass-transfer, allotropic and martensitic transitions and formation of grain boundary phases.</span></p>


2008 ◽  
Vol 604-605 ◽  
pp. 97-111 ◽  
Author(s):  
Roberto B. Figueiredo ◽  
Megumi Kawasaki ◽  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) provides an opportunity for achieving very significant grain refinement in bulk metals. Since the occurrence of superplastic flow generally requires a grain size smaller than ~10 µm, it is reasonable to anticipate that materials processed by SPD will exhibit superplastic ductilities when pulled in tension at elevated temperatures. This paper summarizes the fundamental principles of SPD processing and describes recent results demonstrating the occurrence of exceptional superplastic flow in these ultrafine-grained materials.


2013 ◽  
Vol 738-739 ◽  
pp. 530-534 ◽  
Author(s):  
Natalia N. Kuranova ◽  
Vladimir V. Makarov ◽  
Vladimir G. Pushin ◽  
Alexey N. Uksusnikov

Results of investigations of structure and phase transformations and properties of the TiNi-based alloys with a shape memory effect (SME) after severe plastic deformation (SPD) by cold rolling, cold drawing, high pressure torsion and subsequent annealing are reported. It is found that the baroelastic effects related to the highly reversible martensitic transformations can occur in alloys, subjected to high pressure. The evolution of fine structure of the alloys into nanocrystalline and then amorphous state during SPD and after subsequent annealing have been studied. The effect of grain size on the martensitic transformations and properties of the alloys is discussed.


2016 ◽  
Vol 838-839 ◽  
pp. 398-403 ◽  
Author(s):  
Marina Tikhonova ◽  
Nariman Enikeev ◽  
Ruslan Z. Valiev ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The formation of submicrocrystalline structure during severe plastic deformation and its effect on mechanical properties of an S304H austenitic stainless steel with chemical composition of Fe – 0.1C – 0.12N – 0.1Si – 0.95Mn – 18.4Cr – 7.85Ni – 3.2Cu – 0.5Nb – 0.01P – 0.006S (all in mass%) were studied. The severe plastic deformation was carried out by high pressure torsion (HPT) at two different temperatures, i.e., room temperature or 400°C. HPT at room temperature or 400°C led to the formation of a fully austenitic submicrocrystalline structure. The grain size and strength of the steels with ultrafine-grained structures produced by cold or warm HPT were almost the same. The ultimate tensile strengths were 1950 MPa and 1828 MPa after HPT at room temperature and 400°C, respectively.


Sign in / Sign up

Export Citation Format

Share Document