shear texture
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1925
Author(s):  
Young Gun Ko ◽  
Kotiba Hamad

The aim of this paper was to investigate the microstructural development and properties of interstitial free (IF) steel fabricated using the DSR (differential speed rolling) process. Severe plastic deformation of the DSR passes was imposed on the sample for up to four passes, leading to ~1.7 total strain with a speed ratio of 1:4 between the two rolls. Microstructural observation revealed that the equiaxed grain size of ~0.7 µm, including the formation of grain boundaries with a high angle of misorientation, was reached after four operations of DSR, which was attributed to the grain subdivision of severely elongated ferrite grain. Since the deformation mode of the DSR operation was dominated by severe shear deformation, the main shear texture of the bcc components appeared in all DSR operations in which the α-fiber of the {110} slip became a main component in accommodating the severe plastic deformation of the DSR process. The intensity of the shear texture, the {110} and {112} slip, increased by increasing the number of passes. Moreover, the γ-fiber of the <112>-type planes was activated as a result of the alternation of the shear direction during sample rotation. The microhardness and room temperature tensile tests revealed that the strength of the IF steel improved as the amount of strain increased, and this was attributed to the grain refinement and texture characteristics of the samples after the DSR processing.


Author(s):  
Xiaolong Bai ◽  
Andrew Kustas ◽  
James B. Mann ◽  
Srinivasan Chandrasekar ◽  
Kevin P Trumble

Abstract Shear-based deformation processing by hybrid cutting-extrusion and free machining are used to make continuous strip, of thickness up to one millimeter, from low-workability AA6013-T6 in a single deformation step. The intense shear can impose effective strains as large as 2 in the strip without pre-heating of the workpiece. The creation of strip in a single step is facilitated by three factors inherent to the cutting deformation zone: highly confined shear deformation, in situ plastic deformation-induced heating and high hydrostatic pressure. The hybrid cutting-extrusion, which employs a second die located across from the primary cutting tool to constrain the chip geometry, is found to produce strip with smooth surfaces (Sa &lt; 0.4 μm) that is similar to cold-rolled strip. The strips show an elongated grain microstructure that is inclined to the strip surfaces – a shear texture – that is quite different from rolled sheet. This shear texture (inclination) angle is determined by the deformation path. Through control of the deformation parameters such as strain and temperature, a range of microstructures and strengths could be achieved in the strip. When the cutting-based deformation was done at room temperature, without workpiece pre-heating, the starting T6 material was further strengthened by as much as 30% in a single step. In elevated-temperature cutting-extrusion, dynamic recrystallization was observed, resulting in a refined grain size in the strip. Implications for deformation processing of age-hardenable Al alloys into sheet form, and microstructure control therein, are discussed.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 181 ◽  
Author(s):  
Mohamed Mohamed Zaky Ahmed ◽  
Sabbah Ataya ◽  
Mohamed Mohamed El-Sayed Seleman ◽  
Tarek Allam ◽  
Naser Abdulrahman Alsaleh ◽  
...  

This work investigated the effect of friction stir welding (FSW) tool rotation rate and welding speed on the grain structure evolution in the nugget zone through the thickness of the 10 mm thick AA5083/AA5754 weldments. Three joints were produced at different combinations of FSW parameters. The grain structure and texture were investigated using electron backscattering diffraction (EBSD). In addition, both the hardness and tensile properties were investigated. It was found that the grain size varied through the thickness in the nugget (NG), which was reduced from the top to the base in all welds. Reducing the rotation rate from 600 rpm to 400 rpm at a constant welding speed of 60 mm/min reduced the average grain size from 33 µm to 25 µm at the top and from 19 µm to 12 µm at the base. On the other hand, the increase of the welding speed from 20 mm/min to 60 mm/min had no obvious effect on the average grain size. This implied that the rotation rate was more effective in grain size reduction than the welding speed. The texture was the mainly simple shear texture that required some rotations to obtain the ideal simple shear texture. The hardness distribution, mapped for the nugget zone, and the parent alloys indicated a diffused softened welding zone. The heating effect of the pressure and rotation of the pin shoulder and the heat input parameter (ω/v) on the hardness value of the nugget zone were dominating. Tensile stress-strain curves of the base alloys and that of the FSWed joints were evaluated and presented. Moreover, the true stress-true strain curves were determined and described by the empirical formula after Ludwik, and then the materials strengthening parameters were determined. The tensile specimens of the welded joint at a revolution speed of 400 rpm and travel speed of 60 mm/min possessed the highest strain hardening parameter (n = 0.494).


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5834
Author(s):  
Chi Zhang ◽  
Laszlo S. Toth

During severe plastic deformation (SPD), there is usually extended grain fragmentation, associated with the formation of a crystallographic texture. The effect of texture evolution is, however, coarsening in grain size, as neighbor grains might coalesce into one grain by approaching the same ideal orientation. This work investigates the texture-induced grain coarsening effect in face-centered cubic polycrystals during simple shear, in 3D topology. The 3D polycrystal aggregate was constructed using a cellular automaton model with periodic boundary conditions. The grains constituting the polycrystal were assigned to orientations, which were updated using the Taylor polycrystal plasticity approach. At the end of plastic straining, a grain detection procedure (similar to the one in electron backscatter diffraction, but in 3D) was applied to detect if the orientation difference between neighboring grains decreased below a small critical value (5°). Three types of initial textures were considered in the simulations: shear texture, random texture, and cube-type texture. The most affected case was the further shearing of an initially already shear texture: nearly 40% of the initial volume was concerned by the coalescence effect at a shear strain of 4. The coarsening was less in the initial random texture (~30%) and the smallest in the cube-type texture (~20%). The number of neighboring grains coalescing into one grain went up to 12. It is concluded that the texture-induced coarsening effect in SPD processing cannot be ignored and should be taken into account in the grain fragmentation process.


2020 ◽  
pp. 158142
Author(s):  
Hiba Azzeddine ◽  
Thierry Baudin ◽  
Anne-Laure Helbert ◽  
François Brisset ◽  
Yi Huang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4161 ◽  
Author(s):  
Lenka Kunčická ◽  
Zuzana Klečková

The study focuses on structure analyses, texture analyses in particular, of an Al/Cu clad composite manufactured by single and double pass of the twist channel angular pressing (TCAP) method. Microscopic analyses were supplemented with numerical predictions focused on the effective imposed strain and material plastic flow, and microhardness measurements. Both the TCAP passes imparted characteristic texture orientations to the reinforcing Cu wires, however, the individual preferential grains’ orientations throughout the composite differed and depended on the location of the particular wire within the Al sheath during extrusion, i.e., on the dominant acting strain path. The second TCAP pass resulted in texture homogenization; all the Cu wires finally exhibited dominant A fiber shear texture. This finding was in accordance with the homogenization of the imposed strain predicted after the second TCAP pass. The results also revealed that both the component metals exhibited significant deformation strengthening (which also caused bending of the ends of the Cu wires within the Al sheath after extrusion). The average microhardness of the Cu wires after the second pass reached up to 128 HV, while for the Al sheath the value was 86 HV.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Nan Ye ◽  
Xueping Ren

The Al-Nb/Ti/Ni composite was fabricated from pure Al, Ni, Ti, and Nb sheets by the ARB technology. The microstructure evolution was observed by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The evolution was evaluated by the electron backscattered diffraction (EBSD) technique. A couple of results we obtained showed that the microstructure of Al changed from equiaxed grains to a lamellar structure, and the grain size in the ND decreased gradually. Finally, the average grain size in the ND was 0.31 μm. Additionally, the fraction of HAGBs increased after the third pass, resulting from the dynamic recovery and the shear bands. The texture evolution was tested by electron backscattered diffraction. After the fourth pass, the Al exhibited a combination texture of rolling texture and shear texture. The rolling texture components were composed of Copper{112}<111>, Dillamore{4 4 11}<11 11 8>, S{123}<634>, and Brass{011}<211>, and the shear texture components were Rotated Cube {001}<110> and {111}//ND. The microhardness of Ni, Ti, Nb, and Al was improved in the ARB process and finally reached 226.4, 246.3, 187.2, and 44.2 HV, respectively.


2020 ◽  
Vol 786 ◽  
pp. 139471
Author(s):  
Chang-Hee Cho ◽  
Kwang-Tae Son ◽  
Jae-Cheol Lee ◽  
Shae K. Kim ◽  
Young-Ok Yoon ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document