A Study on the Chloride Diffusion into Portland Limestone Cement Concrete

2010 ◽  
Vol 636-637 ◽  
pp. 1355-1361 ◽  
Author(s):  
Sotiris Tsivilis ◽  
A. Asprogerakas

In this paper the diffusion of chloride ions through limestone cement concrete is studied. The Portland limestone cements have many benefits and the new European Standard EN 197-1 identifies 4 types of Portland limestone cement containing 6-20% limestone (types II/A-L and II/A-LL) and 21-35% limestone (types II/B-L and II/B-LL), respectively. Portland limestone cements of different fineness and limestone content (0-35% w/w) have been produced by inter-grinding clinker, gypsum and limestone. Six concrete mixtures were prepared and the Nordtest Method (accelerated chloride penetration) was applied for the determination of penetration parameters for estimating the resistance against chloride penetration into hardened concrete. The diffusion equation of Fick’s second law was used for the determination of the effective chloride transport coefficient. It is concluded that Portland limestone cement concrete indicates competitive behavior with the Portland cement concrete. Limestone content up to 15% has a positive effect on the concrete resistance against chloride penetration.

2016 ◽  
Vol 711 ◽  
pp. 137-142 ◽  
Author(s):  
Daniel Dobias ◽  
Radka Pernicova ◽  
Tomas Mandlik

Properties of water transport and depth of chloride penetration into the Ultra High Performance Concrete (hereafter as UHPC) with mild steel fibres are presented in this paper. The main aim of this experimental part of work is to obtain sufficiently accurate input data for the evaluation of long-term durability of architectural concrete which are connected with water transport and its accompanying effects such as biological degradation or chloride transport. The article also presents the one dimensional chloride diffusion into UHPC which can be potentially dangerous particularly for durability of reinforced concrete structures. For the simulation of aggressive environments the concrete samples were exposed to chloride solution for one year. Measured data were examined in relation to the depth of penetration of chloride ions into the UHPC structure. Comparative measurements with normal strength concrete (hereafter as NSC) are done as well. An about five-time lower value of moisture absorption of UHPC compared to the NSC was observed and further the curve of chloride penetration into the structure is significantly steeper for UHPC samples.


2010 ◽  
Vol 636-637 ◽  
pp. 1349-1354
Author(s):  
K. Sotiriadis ◽  
E. Nikolopoulou ◽  
Sotiris Tsivilis

In this paper the effect of chlorides on the thaumasite form of sulfate attack in limestone cement concrete is studied. Concrete specimens made from ordinary Portland cement and two Portland limestone cements (limestone content 15% and 35% respectively) were prepared. After 28 days of curing the specimens were immersed in six solutions of various sulfate and chloride content and stored at 5oC. Visual assessment of the specimens, mass measurements and compressive strength tests took place for a period of 24 months. XRD method was used to identify thaumasite in the deteriorated parts of the specimens. All measurements showed that Portland cement concrete exhibits a lower degree of deterioration than Portland limestone cement concrete. Specimen disintegration was more severe, the higher the limestone contents of the cements and the higher the sulfate content of the corrosive storage solutions. Chlorides play an inhibitory role, delaying the deterioration of the concrete specimens. XRD analysis showed the presence of thaumasite at the deteriorated parts of the specimens after nine months of curing.


CORROSION ◽  
1982 ◽  
Vol 38 (9) ◽  
pp. 494-499 ◽  
Author(s):  
Changiz Dehghanian ◽  
Carl E. Locke

Abstract Penetration of chloride salts into concrete from sources such as deicing-salts or sea water causes a severe corrosion problem to reinforcing steel. In this paper, the effect of salt penetration into concrete on the corrosion process was investigated by electrochemical techniques such as anodic and cathodic polarization. The potential measurements of steel in concrete were also made to compare the data with the results obtained from the polarization curves. Concretes made of Type I and Type V Portland cement were used. It was found that corrosion of steel in Type I Portland cement concrete is more rapid than in the Type V Portland cement concrete when the steel is exposed to salt solutions. This may be due to the differences in alkalinites which exist between the Types I and V Portland cement, whereas steel in the concrete with high pH can tolerate more Cl− than in concrete with lower pH. Corrosion of steel is more severe in the presence of chlorides added externally to hardened concrete than in the presence of chloride mixed with fresh concrete. Anodic and cathodic current densities for steel in concrete made of Types I and V Portland cement increase with the time that the concrete remains in the salt solutions.


2016 ◽  
Vol 714 ◽  
pp. 165-170
Author(s):  
Dalibor Kocáb ◽  
Petr Misák ◽  
Monika Králíková ◽  
Tereza Komárková

The paper describes the results of an experiment performed as part of the GAČR 13-18870S project dealing with the durability characteristics of the surface layer of hardened concrete. The paper aims to evaluate the experimental determination of the influence of an air entraining additive on the resistance of cement concrete to water and defrosting chemicals. For the purposes of the experiment 4 mixtures were prepared which differed in the amount of air entraining additive and the amount of cement. The test results were evaluated using statistical analysis of experiment.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yinchuan Guo ◽  
Aiqin Shen ◽  
Xiaohui Sun

The concrete roadside structures in Xinjiang, China, such as roadside barriers, bridge rails, and drainage holes, are severely damaged by the coupled effect of seasonal freeze-thaw cycles and deicer salts. To solve the corrosion problems of roadside structures, polymer-modified concrete was recommended for the future construction of roadside structures and polymer-modified cementitious coating was suggested for the protection of the current corroded ones. In this study, air-entraining agent and carboxylated styrene-butadiene latex were added for concrete modification and the corresponding performance tests were conducted. In addition, the performances of six types of readily available coating materials, including the acrylic latex modified cementitious coating designed in this study, were tested in freeze-thaw condition with the presence of chloride ions. The results show that 0.013% of the air-entraining agent and 10% of the carboxylated styrene-butadiene latex were appropriate dosage rates for the modification of Portland cement concrete, in terms of the improvement of the freeze-thaw resistance, compressive strength, and chloride impermeability. For the protection of the current corroded roadside structures, the acrylic-modified cementitious coating material demonstrated a good performance and the field monitoring confirmed that the coating is suitable for the protection of the roadside structures in Xinjiang.


2011 ◽  
Vol 685 ◽  
pp. 211-215
Author(s):  
Jian Ping Zhu ◽  
Qi Lei Guo ◽  
Dong Xu Li ◽  
Cun Jun Li

The Present Research Investigates the Compressive and Durable Properties of Concretes with Fly Ash (FA), a by-Product of Coal-Fired Power Plants. for this Purpose, a Reference Sample and Twenty-one Concretes Containing FA Were Tested. the FA Was Sieved to 200, 300, and 400 Mesh. then FA Was Mixed into Concrete with Different Content. Compressive Strength at 7 and 28 Days, and Chloride Penetration Properties Were Measured. it Is Concluded that FA Can Be Used in the Production of Concrete. in Addition, the FA Concretes Present Satisfactory Physical Properties. when Proper Amount of FA Were Added the Concrete Properties Can Be Better than the Blank one.


2016 ◽  
Vol 700 ◽  
pp. 183-196 ◽  
Author(s):  
Ahmad Azrem Azmi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Che Mohd Ruzaidi Ghazali ◽  
Andrei Victor Sandu ◽  
Kamarudin Hussin ◽  
...  

Utilization of waste materials such as waste tire rubber in the building industry can help prevent environmental pollution whilst contributing to the design of more economical buildings. Preliminary studies show that workable rubberized portland cement concrete mixtures can be made provided that appropriate percentages of tire rubber are used in such mixtures. This article provides the overview of some of published paper using tire waste rubber in portland cement concrete. The researchers mostly investigated the properties of fresh and hardened concrete. The workability, density, air content, unit weight, compressive strength, modulus of elasticity, freezing and thawing resistance, abrasion resistance and thermal properties of the waste tire rubber in concrete were discussed.


Sign in / Sign up

Export Citation Format

Share Document