Analysis of Optical Properties of GaN/AlGaN Quantum Well Ultra-Violet Laser Diode Using 6X6 Hamiltonian

2010 ◽  
Vol 638-642 ◽  
pp. 1653-1658 ◽  
Author(s):  
Dnyaneshwar S. Patil ◽  
E.P. Samuel

The Quantum well structures have exhibited significant utility in the fabrication of advanced laser devices. The Gallium nitride semiconductor and its alloy particularly AlGaN based quantum structures are having important applications in optical data storage systems and the visible displays. Due to tailoring of wide band gap energy the spectrum obtained is from visible to ultraviolet wavelength range. We had thoroughly investigated the influence of Aluminum mole fraction variation in AlxGa1-xN under a biased condition for GaN/AlGaN based quantum heterostructure optical properties. Here, we had used 6X6 Hamiltonian to realize these properties. The 6X6 Hamiltonian has been chosen to include the many body effect in the calculation and to enhance the accuracy of the optimized results. The paper is focused to reveal the Aluminum mole fraction dependence of near and far filed intensities, peak optical gain, carrier concentration, and optical confinement factor. The effective index method has been used in determination of the optical field intensity in the near and far regimes. The variation in Aluminum mole fraction produces disparity in carrier concentration; hence, we have obtained the spontaneous emission and optical gain as a function of photon energy for different carrier density. The piezoelectric effect on GaN quantum well due to AlGaN barriers has been included through Poisson equation. This Poisson equation has been solved in a self-consistent manner along with Schrödinger and subsequently carrier concentrations have been deduced with a high accuracy using our simulation tools developed in MATLAB.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Mihai ◽  
F. Sava ◽  
I. D. Simandan ◽  
A. C. Galca ◽  
I. Burducea ◽  
...  

AbstractThe lack of order in amorphous chalcogenides offers them novel properties but also adds increased challenges in the discovery and design of advanced functional materials. The amorphous compositions in the Si–Ge–Te system are of interest for many applications such as optical data storage, optical sensors and Ovonic threshold switches. But an extended exploration of this system is still missing. In this study, magnetron co-sputtering is used for the combinatorial synthesis of thin film libraries, outside the glass formation domain. Compositional, structural and optical properties are investigated and discussed in the framework of topological constraint theory. The materials in the library are classified as stressed-rigid amorphous networks. The bandgap is heavily influenced by the Te content while the near-IR refractive index dependence on Ge concentration shows a minimum, which could be exploited in applications. A transition from a disordered to a more ordered amorphous network at 60 at% Te, is observed. The thermal stability study shows that the formed crystalline phases are dictated by the concentration of Ge and Te. New amorphous compositions in the Si–Ge–Te system were found and their properties explored, thus enabling an informed and rapid material selection and design for applications.


1999 ◽  
Vol 4 (S1) ◽  
pp. 642-647
Author(s):  
Michael C.Y. Chan ◽  
Kwok-On Tsang ◽  
E. Herbert Li ◽  
Steven P. Denbaars

Quantum well (QW) material engineering has attracted a considerable amount of interest from many people because of its ability to produce a number of optoelectronic devices. QW composition intermixing is a thermal induced interdiffusion of the constituent atoms through the hetero-interface. The intermixing process is an attractive way to achieve the modification of the QW band structure. It is known that the band structure is a fundamental determinant for such electronic and optical properties of materials as the optical gain, the refractive index and the absorption. During the process, the as-grown square-QW compositional profile is modified to a graded profile, thereby altering the confinement profile and the subband structure in the QW. The blue-shifting of the wavelength in the intermixed QW structure is found in this process.In recent years, III-nitride semiconductors have attracted much attention. This is mainly due to their large bandgap range from 1.89eV (wurtzite InN) to 3.44eV (wurtzite GaN). InGaN/GaN quantum well structures have been used to achieve high lumens blue and green light emitting diodes. Such structures also facilitate the production of full colour LED displays by complementing the colour spectrum of available LEDs.In this paper, the effects of thermal annealing on the strained-layer InGaN/GaN QW will be presented. The effects of intermixing on the confinement potential of InGaN/GaN QWs have been theoretically analysed, with sublattices interdiffusion as the basis. This process is described by Fick’s law, with constant diffusion coefficients in both the well and the barrier layers. The diffusion coefficients depend on the annealing temperature, time and the activation energy of constituent atoms. The optical properties of intermixed InGaN/GaN QW structure of different interdiffusion rates have been theoretically analyzed for applications of novel optical devices. The photoluminescence studies and the intermixed QW modeling have been used to understand the effects of intermixing.


1998 ◽  
Vol 537 ◽  
Author(s):  
Michael C.Y. Chan ◽  
Kwok-On Tsang ◽  
E. Herbert Li ◽  
Steven P. Denbaars

AbstractQuantum well (QW) material engineering has attracted a considerable amount of interest from many people because of its ability to produce a number of optoelectronic devices. QW composition intermixing is a thermal induced interdiffusion of the constituent atoms through the hetero-interface. The intermixing process is an attractive way to achieve the modification of the QW band structure. It is known that the band structure is a fundamental determinant for such electronic and optical properties of materials as the optical gain, the refractive index and the absorption. During the process, the as-grown square-QW compositional profile is modified to a graded profile, thereby altering the confinement profile and the subband structure in the QW. The blue-shifting of the wavelength in the intermixed QW structure is found in this process.In recent years, III-nitride semiconductors have attracted much attention. This is mainly due to their large bandgap range from 1.89eV (wurtzite InN) to 3.44eV (wurtzite GaN). InGaN/GaN quantum well structures have been used to achieve high lumens blue and green light emitting diodes. Such structures also facilitate the production of full colour LED displays by complementing the colour spectrum of available LEDs.In this paper, the effects of thermal annealing on the strained-layer InGaN/GaN QW will be presented. The effects of intermixing on the confinement potential of InGaN/GaN QWs have been theoretically analysed, with sublattices interdiffusion as the basis. This process is described by Fick's law, with constant diffusion coefficients in both the well and the barrier layers. The diffusion coefficients depend on the annealing temperature, time and the activation energy of constituent atoms. The optical properties of intermixed InGaN/GaN QW structure of different interdiffusion rates have been theoretically analyzed for applications of novel optical devices. The photoluminescence studies and the intermixed QW modeling have been used to understand the effects of intermixing.


2021 ◽  
Vol 33 (6) ◽  
pp. 48-56
Author(s):  
SUKHDEV BAIRAGI ◽  
◽  
GHIZAL F. ANSAR ◽  

In this work we review the effect of physical and optical properties with different ion zinc contents of tellurite base glass. The physical properties of the glasses were evaluated and the change in density, molar volume and ionic packing density in these glasses indicates the effect of ZnO different content show on the glasses structure. The study of optical properties such as the optical band gap and refractive index of zinc tellurite glass were studied. Zinc Tellurite glasses doped with Er3+ ions were synthesized by varies researcher. The glasses were characterized by X- ray diffraction, optical absorption and photoluminescence spectra. The glassy nature of zinc Tellurite host glass has been confirmed through XRD measurements. The glasses doped or co-doped with rare-earth ions have generated much interest due to the possibility of several promising applications such as optical data storage, visible laser, fibre amplifier, optical communication and sensor devices


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 818
Author(s):  
Xuehua Zhang ◽  
Qian Wang ◽  
Shun Liu ◽  
Wei Zhang ◽  
Fangren Hu ◽  
...  

GeO2/organically modified silane (ormosils) organic-inorganic composite films containing azobenzene were prepared by combining sol-gel technology and spin coating method. Optical waveguide properties including the refractive index and thickness of the composite films were characterized by using a prism coupling instrument. Surface morphology and photochemical properties of the composite films were investigated by atomic force microscope and Fourier transform infrared spectrometer. Results indicate that the composite films have smooth and neat surface, and excellent optical waveguide performance. Photo-isomerization properties of the composite films were studied by using a UV–Vis spectrophotometer. Optical switching performance of the composite films was also studied under the alternating exposure of 365 nm ultraviolet light and 410 nm visible light. Finally, strip waveguides and microlens arrays were built in the composite films through a UV soft imprint technique. Based on the above results, we believe that the prepared composite films are promising candidates for micro-nano optics and photonic applications, which would allow directly integrating the optical data storage and optical switching devices onto a single chip.


Sign in / Sign up

Export Citation Format

Share Document