Biotribology Behavior of Ultra-High Molecular Weight Polyethylene against Carbon/Carbon Composites Used for Hip Joint Replacement

2011 ◽  
Vol 685 ◽  
pp. 327-330
Author(s):  
Lei Lei Zhang ◽  
He Jun Li ◽  
Ke Zhi Li ◽  
Ling Jun Guo ◽  
Wei Feng Cao ◽  
...  

In order to investigate the biotribology behavior of a novel artificial joint pair composed of a carbon/carbon composite femoral head and an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup, a hip joint simulator was employed to predict the clinical wear behavior with a constant load and a lubricant of newborn calf serum. The worn surface and the wear particles generated were analyzed by scanning electron microscopy and laser particle size analyzer. The results showed that the worn surface of UHMWPE had a ripple-like morphology with plentiful furrows. The wear particles generated had various morphologies with a size concentrated at about 15 μm.

Author(s):  
Shi Bo Wang ◽  
Shi Rong Ge ◽  
Hong Tao Liu ◽  
Xiao Long Huang

Ultra-high molecular-weight polyethylene (UHMWPE) has been used in total hip replacement for the last three decades. Despite the advancements in prosthesis design, the wear of UHMWPE remains a serious clinical problem; the release of wear debris may induce osteolysis and implant loosening. Understanding of wear behavior and wear debris morphology of the polyethylene is essential to improve the reliability of hip joint implants. The investigation in this paper carried out wear simulation tests of UHMWPE on Al2O3, 316L stainless steel, CoCrMo alloy and Ti6Al4V alloy, respectively. The lubrication of plasma solution and bovine serum solution was presented in wear tests. The effect of motion and loading on the wear behavior and wear debris morphology, and the influence of femoral head material and assembly style were studied in order to obtain a better understanding of the morphology of ultra-high molecular weight polyethylene wear particles. It is shown that the wear of UHMWPE acetabular cups against metal femoral heads was significantly higher than that against ceramic heads. The presence of protein in lubricant increases the wear of UHMWPE acetabular cups on Al2O3 heads. The wear rates of UHMWPE in multi-directional motion are approximately 2.5 times of those in uni-directional motion. The size distribution range of the UHMWPE debris particles for all head materials varies from submicron particles up to several hundreds micron. The size distribution range of wear debris particles is not directly related to wear resistance of UHMWPE, but significantly influenced by wear mechanisms. The UHMWPE debris particles produced in hip wear simulation tests are classified as round debris, flake-like debris and stick debris, which are closely related to the primary mechanisms of abrasive wear, adhesive wear and fatigue wear.


2013 ◽  
Vol 21 (9) ◽  
pp. 965-970 ◽  
Author(s):  
Hong-Jo Park ◽  
Jihun Kim ◽  
Yongsok Seo ◽  
Junho Shim ◽  
Moon-Yong Sung ◽  
...  

2003 ◽  
Vol 125 (3) ◽  
pp. 638-642 ◽  
Author(s):  
Vesa Saikko

In the wear testing of prosthetic joints, the optimal lubricant protein concentration is disputed. The effect of protein concentration of calf serum based lubricant on the wear of ultra-high molecular weight polyethylene against CoCr was studied with a 12-station, circularly translating pin-on-disk device. The wear factor first steeply increased with increasing concentration, reached a peak at 10–20 mg/ml, and then slowly decreased. Below 20 mg/ml, the wear mechanisms were not entirely representative of clinical wear. Above this value, the morphology of the UHMWPE wear surface resembled that of retrieved cups. The results indicated that the concentration should not be below 20 mg/ml. The scope of this recommendation is discussed.


Sign in / Sign up

Export Citation Format

Share Document