wear factor
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Pooja Rani

Abstract: The wearing of metal parts might be defined as a gradual decay or breakdown of the metal. When a part becomes so deformed that it cannot perform adequately, it must be replaced or rebuilt. While the end results of wear are similar, the causes of wear are different. It is essential to understand the wear factors involved before making a hard surfacing product selection. It would be easy to select a surfacing alloy if all metal components were subjected to only one type of wear. However, a metal part is usually worn by combinations of two or more types of wear. This makes an alloy selection considerably more complicated. A hard surfacing alloy should be chosen as a compromise between each wear factor. The initial focus should centre on the primary wear factor and then the secondary wear factor(s) should be examined. For example: upon examining a worn metal part, it is determined that the primary wear factor is abrasion and the secondary wear factor is light impact. The surfacing alloy chosen should have very good abrasion resistance but also have a fair amount of impact resistance. Keywords: Welding, Hard Facing Electrodes, Alloys, Afrox 300.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6554
Author(s):  
James Alexander ◽  
Huan Dong ◽  
Deepa Bose ◽  
Ali Abdelhafeez Hassan ◽  
Sein Leung Soo ◽  
...  

Titanium oxide layers were produced via a novel catalytic ceramic conversion treatment (CCCT, C3T) on Ti-6Al-4V. This CCCT process is carried out by applying thin catalytic films of silver and palladium onto the substrate before an already established traditional ceramic conversion treatment (CCT, C2T) is carried out. The layers were characterised using scanning electron microscopy, X-ray diffraction, transmission electron microscopy; surface micro-hardness and reciprocating tribological performance was assessed; antibacterial performance was also assessed with s. aureus. This CCCT has been shown to increase the oxide thickness from ~ 5 to ~ 100 µm, with the production of an aluminium rich layer and agglomerates of silver and palladium oxide surrounded by vanadium oxide at the surface. The wear factor was significantly reduced from ~ 393 to ~ 5 m3/N·m, and a significant reduction in the number of colony-forming units per ml of Staphylococcus aureus on the CCCT surfaces was observed. The potential of the novel C3T treatment has been demonstrated by comparing the performance of C3T treated and untreated Ti6Al4V fixation pins through inserting into simulated bone materials.


2021 ◽  
Author(s):  
Florian Aichinger ◽  
Loic Brillaud ◽  
Ben Nobbs ◽  
Florent Couliou ◽  
Joy Oyovwevotu ◽  
...  

Abstract Objectives/Scope This paper will present predicted vs. measured wear for six wells that were analysed in the Culzean field, which is a high-pressure, high-temperature (HPHT) gas condensate field located in the central North Sea. The focus rests on the casing wear prediction, monitoring and analysing process and within that, especially on how to make use of offset data to improve the accuracy of casing wear predictions. Methods The three major inputs to successfully predict casing wear are: Trajectory & Tortuosity, Wear Factor and required rotating operations. All those were calibrated based on field measurements (High-resolution gyro, MFCL (Multi-Finger-Caliper-Log) and automatically recorded rig mechanics data), to improve the prediction quality for the next section and/or well. The simulations were done using an advanced stiff-string model featuring a 3D mesh that distinguishes the influence of different contact type and geometry on the wear groove shape. The "single MFCL interpretation method", in which the wear is measured against the most probable elliptical casing shape and herby allowing wear interpretation with only one MFCL log and avoiding bias error, was applied. (Aichinger, 2016) Results, Observations, Conclusions For the six wells that were analysed the prediction of the largest wear peak per well section was compared to the measurement. In the planning phase (before any survey data was available) the mean error on the wear groove depth was +/− 0.025 [in] (+/− 0.6 [mm]), the maximum error was +/− 0.045 [in] (1.1 [mm]). The average error of the results is summarized in Figure 10 and laid out in detail in Figure 9. Generally, the predictions are accurate enough to be able to manage casing wear effectively. In this particular case, the maximum allowable wear on the intermediate casing was extremely limited to ensure proper well integrity in case of a well full of gas event while drilling an HTHP reservoir. Novel/Additive Information This paper should provide help to Engineers who seek to improve the accuracy of casing wear prediction and hence improve casing wear management. It presents a new way of anticipating tortuosity based on offset well data and it offers a suggestion on how to deal with MFCL measurement error during Wear Factor calibration and Wear prediction.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 884
Author(s):  
Andrzej Borawski

Braking systems have a direct impact on the safety of road users. That is why it is crucial that the performance of brakes be dependable and faultless. Unfortunately, the operating conditions of brakes during their operating time are affected by many variables, which results in changes in their tribological properties. This article presents an attempt to develop a methodology for studying how the operating time affects the value of the coefficient of friction and the abrasive wear factor. The Taguchi method of process optimization was used to plan the experiment, which was based on tests using the ball-cratering method. The results clearly show that the degree of wear affects the properties of the friction material used in the production process of brakes.


2021 ◽  
pp. 11-11
Author(s):  
Fatima Zivic ◽  
Nenad Grujovic ◽  
Slobodan Mitrovic ◽  
Jovan Tanaskovic ◽  
Petar Todorovic

This paper presents microstructural properties and damage behaviour of a vacuum mixed poly(methyl metacrylate) (PMMA) bone cement, during the sliding contact with AISI 316L stainless steel, under micro-loads. Influence of the Ringer's solution on the wear was analysed in comparison to dry contact. The variation of load did not produce any significant change of the wear factor while the increase in the sliding speed induced significant increases in the wear factor, more pronounced in the case of dry sliding. The obtained wear factors were in average higher for the sliding in Ringer's solution than those obtained under dry conditions. Significant fragmentation of the worn tracks, of irregular shapes with broken edges, was observed, slightly more pronounced for the dry contact. Many cavities and voids were formed on the wear track surface, but they did not extend into the bulk material. Higher loads produced more uniform and less fragmented wear tracks. Abrasive, adhesive wear and plastic deformation grooves were observed, as well as fatigue and erosive wear. Fatigue cracks developed in the direction normal to sliding. Network of fine craze cracks was exhibited on the surface of wear tracks, especially pronounced in the case of dry sliding. These results are important since they contribute to understanding the sites of crack initiation, and development mechanisms on the surface of PMMA bone cements, also including synergistic effects of physiological environments pertaining to the non-steady crack and craze behaviour and crack pattern development in PMMA.


2021 ◽  
Vol 346 ◽  
pp. 02018
Author(s):  
E.V. Ageev ◽  
S.V. Khardikov ◽  
O.G. Loktionova ◽  
V.I. Kolmykov

The article presents the results of a study of the wear resistance of sintered specimens from electroerosive powder of steel X13, obtained in butyl alcohol. The friction coefficient was 0.950, the width of the wear groove was 455.9 µm, the depth of the wear groove was 6 µm, the wear factor of the sample was 1.676x10-6 mm3 N-1m-1.


2021 ◽  
pp. 32-35
Author(s):  
Alexander Valeryevich Shiler ◽  
◽  
Valeriy Viktorovich Shiler ◽  
Vladimir Vasilyevich Bublik ◽  
Nikolay Vasilyevich Esin ◽  
...  

The paper presents a method for comparative assessment of wear of support surfaces of freight car bogie bearings with block and standard wheelsets. With the use of wear factor coefficient the authors have established that the calculated values of wear energy of bogie bearing equipped with block wheelsets are significantly lower in comparison with the bogie bearing with standard wheelsets.


Author(s):  
Vladimir Altuhov ◽  
Aleksey Boldyrev ◽  
Pavel Zhirov

The article is devoted to the study of the influence of dynamic loading on the characteristics of polymer elements of shock absorbers of the rolling stock of railways and to the description of the creation of a mathematical model of their work. The results of mathematical modeling are further used to solve problems of the longitudinal dynamics of rolling stock. In the study, the initial loading rate varied, the ambient temperature and the influence of the wear factor remained unchanged. For the operating speeds of a freight car, a mathematical model of the PMKP-110 draft gear was determined.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4895
Author(s):  
Kazimierz Drozd ◽  
Mariusz Walczak ◽  
Mirosław Szala ◽  
Kamil Gancarczyk

The tribological performance of metalwork steel tools is of vital importance in both cold and hot working processes. One solution for improving metal tool life is the application of coatings. This paper investigates the differences in quantitative wear behavior and wear mechanisms between AlCrSiN-coated and bare steel K340 and five reference tool steels: X155CrVMo12-1, X37CrMoV5-1, X40CrMoV5-1, 40CrMnMo7 and 90MnCrV8. The investigated tool steels were heat-treated, while K340 was subjected to thermochemical treatment and then coated with an AlCrSiN hard film (K340/AlCrSiN). The hardness, chemical composition, phase structure and microstructure of steels K340 and K340/AlCrSiN were examined. Tribological tests were conducted using the ball-on-disc tester in compliance with the ASTM G99 standard. The tests were performed under dry unidirectional sliding conditions, using an Al2O3 ball as a counterbody. The wear factor and coefficient of friction were estimated and analyzed with respect to hardness and alloying composition of the materials under study. Scanning electron microscopy (SEM) observations were made to identify the sliding wear mechanisms of the analyzed tool steels and physical vapor deposition (PVD)- coated K340 steel. In contrast to the harsh abrasive–adhesive wear mechanism observed for uncoated tool steels, the abrasive wear dominates in case of the AlCrSiN. The deposited thin film effectively prevents the K340 substrate from harsh wear severe degradation. Moreover, thanks to the deposited coating, the K340/AlCrSiN sample has a coefficient of friction (COF) of 0.529 and a wear factor of K = 5.68 × 10−7 m3 N−1 m−1, while the COF of the reference tool steels ranges from 0.70 to 0.89 and their wear factor ranges from 1.68 × 10−5 to 3.67 × 10−5 m3 N−1 m−1. The AlCrSiN deposition reduces the wear of the K340 steel and improves its sliding properties, which makes it a promising method for prolonging the service life of metalwork tools.


Sign in / Sign up

Export Citation Format

Share Document