Polyimide Electronic Structural and Optical Properties from First Principles Calculations

2011 ◽  
Vol 694 ◽  
pp. 597-601
Author(s):  
Jia Qi Lin ◽  
Jing Leng ◽  
Ming Hui Xia ◽  
Jun Hui Shi ◽  
Qing Guo Chi

The electronic structural and optical properties of Polyimide (PI) are studied by first principle method of density theory. It is shown that molecules orbit contribution of PI is derived from carbon 2p orbital and oxygen 2p orbital, respectively,and the band gap from the energy band structure is much smaller than that of the experimental value. It is also found that the band gap calculated from the absorption edge of absorption spectra is in agreement with the result of the energy band structure. Furthermore, the relationship between the formation of dielectric function peaks and other spectral characteristics is interpreted.

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 876 ◽  
Author(s):  
Qi Qian ◽  
Lei Peng ◽  
Yu Cui ◽  
Liping Sun ◽  
Jinyan Du ◽  
...  

We systematically study, by using first-principles calculations, stabilities, electronic properties, and optical properties of GexSn1-xSe alloy made of SnSe and GeSe monolayers with different Ge concentrations x = 0.0, 0.25, 0.5, 0.75, and 1.0. Our results show that the critical solubility temperature of the alloy is around 580 K. With the increase of Ge concentration, band gap of the alloy increases nonlinearly and ranges from 0.92 to 1.13 eV at the PBE level and 1.39 to 1.59 eV at the HSE06 level. When the Ge concentration x is more than 0.5, the alloy changes into a direct bandgap semiconductor; the band gap ranges from 1.06 to 1.13 eV at the PBE level and 1.50 to 1.59 eV at the HSE06 level, which falls within the range of the optimum band gap for solar cells. Further optical calculations verify that, through alloying, the optical properties can be improved by subtle controlling the compositions. Since GexSn1-xSe alloys with different compositions have been successfully fabricated in experiments, we hope these insights will contribute to the future application in optoelectronics.


2013 ◽  
Vol 846-847 ◽  
pp. 1919-1922
Author(s):  
Hong Liang Pan ◽  
Teng Li ◽  
Shi Liang Yang ◽  
Yi Ming Liu

The electronic-energy band structure and optical properties of SrTi0.5Zr0.5O3are calculated by the pseudo-potential plane wave (PP-PW) mehod with the generalized gradient approximation (GGA). The energy band structure, density of states (DOS) are obtained. The optical properties including the dielectric function, reflectivity, absorption spectrum, extinction coefficient, energy-loss spectrum and refractive index are also discussed.


1970 ◽  
Vol 1 (6) ◽  
pp. 2827-2827
Author(s):  
H. I. Zhang ◽  
J. Callaway

2018 ◽  
Vol 32 (07) ◽  
pp. 1850092 ◽  
Author(s):  
Dandan Li ◽  
Juan Du ◽  
Qian Zhang ◽  
Congxin Xia ◽  
Shuyi Wei

Through first-principles calculations we study the electronic structures and optical properties of two-dimensional (2D) Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys. The results indicate that the band gap value of Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys is decreased continuously when Ti(Zr) concentration is increased, which is very beneficial to optoelectronic devices applications. Moreover, the static dielectric constant is increased when the Ti(Zr) concentration is increased in the 2D Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys. In addition, we also calculate the imaginary part [Formula: see text] dispersion of Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 alloys along the plane with different Ti(Zr) concentrations. The threshold energy values decrease with increasing Ti(Zr) concentrations in the Sn[Formula: see text]Ti(Zr)[Formula: see text]S2 ternary alloys. Moreover, the calculations of formation energy also indicate that these 2D alloys can be fabricated under some experimental conditions. These results suggest that Ti(Zr) substituting Sn atom is an efficient way to tune the band gap and optical properties of 2D SnS2 nanosheets.


2011 ◽  
Vol 216 ◽  
pp. 341-344 ◽  
Author(s):  
Qi Jun Liu ◽  
Zheng Tang Liu ◽  
Li Ping Feng

Electronic structure, effective masses and optical properties of monoclinic HfO2were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated equilibrium lattice parameters are in agreement with the previous works. From the band structure, the effective masses and optical properties are obtained. The calculated band structure shows that monoclinic HfO2has indirect band gap and all of the effective masses of electrons and holes are less than that of a free electron. The peaks position distributions of imaginary parts of the complex dielectric function have been explained according to the theory of crystal-field and molecular-orbital bonding.


2009 ◽  
Vol 113 (19) ◽  
pp. 8460-8464 ◽  
Author(s):  
Luyan Li ◽  
Weihua Wang ◽  
Hui Liu ◽  
Xindian Liu ◽  
Qinggong Song ◽  
...  

1971 ◽  
Vol 4 (2) ◽  
pp. 311-318 ◽  
Author(s):  
A. N. Pikhtin ◽  
V. N. Razbegaev ◽  
N. A. Goryunova ◽  
E. I. Leonov ◽  
V. M. Orlov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document