Structure and Dielectric Properties of Bi0.5K0.5TiO3-SrTiO3 Lead-Free Ceramics

2011 ◽  
Vol 695 ◽  
pp. 166-169
Author(s):  
Anucha Ruangphanit ◽  
Prapapim Phetnoi ◽  
Surasak Niemcharoen ◽  
Rangson Muanghlua

Bismuth potassium titanate – strontium titanate (1-x)Bi0.5K0.5TiO3-(x)SrTiO3 (BKT-ST) lead-free ceramics when x = 0-0.20 were synthesized by the solid state reaction method with normal sintering. The ferroelectric phase transition was studied by X-ray diffraction (XRD). All compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature and the phase structure transformed from ferroelectric tetragonal – paraelectric cubic in the range of x ³ 0.10 . Dielectric study revealed that the dielectric relaxor behavior was induced with increasing ST and transition temperature (Tm@εr max) of ST-doped BKT had a tendency to decrease with increasing ST. The Bi0.5K0.5TiO3 – SrTiO3 system was expected to be a new and promising candidate for lead-free capacitors.

2016 ◽  
Vol 34 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Sumit K. Roy ◽  
S. Chaudhuri ◽  
R.K. Kotnala ◽  
D.K. Singh ◽  
B.P. Singh ◽  
...  

AbstractIn this work the X-ray diffraction, scanning electron microscopy, Raman and dielectric studies of lead free perovskite (1 – x)Ba0.06(Na1/2Bi1/2)0.94TiO3–xNaNbO3 (0 ⩽ x ⩽ 1.0) ceramics, prepared using a standard solid state reaction method, were investigated. X-ray diffraction studies of all the ceramics suggested the formation of single phase with crystal structure transforming from rhombohedral-tetragonal to orthorhombic symmetry with the increase in NaNbO3 content. Raman spectra also confirmed the formation of solid solution without any new phase. Dielectric studies showed that the phase transition is of diffusive character and diffusivity parameter decreases with increasing NaNbO3 content. The compositional fluctuation was considered to be the main cause of diffusivity.


2011 ◽  
Vol 01 (04) ◽  
pp. 439-445 ◽  
Author(s):  
QIAN CHEN ◽  
ZHIJUN XU ◽  
RUIQING CHU ◽  
YONG LIU

The influence of (Li, Ce) doping on the electrical properties of bismuth layer Sr 2-x (Li, Ce) x/2 Bi4Ti5O18 [abbreviated to SBTi-(Li, Ce) X/2] ceramics was investigated. X-ray diffraction analysis showed that all the ceramic samples were single-phase compounds. The (Li, Ce) modification significantly decreased the dielectric loss of Sr2Bi4Ti5O18 ceramics and greatly improved the piezoelectric activity. At x/2 = 0.0125, the SBTi-(Li, Ce) x/2 ceramics exhibited the excellent properties with high remnant polarization (P r = 9.3 μC/cm2) and high Curie temperature (T c = 299°C). Meanwhile, the SBTi-(Li, Ce)0.0125 ceramics had the largest piezoelectric constant (d33 = 26 pC/N). The results showed that the SBTi-(Li, Ce) x/2 ceramic was a promising lead-free piezoelectric material.


2020 ◽  
Vol 14 (4) ◽  
pp. 372-377
Author(s):  
Felicia Gheorghiu ◽  
Mihai Asandulesa ◽  
Lavinia Curecheriu

In the present study, lead-free KTa0.65Nb0.35O3 ceramics were prepared by solid state reaction method using successive calcination steps in order to ensure the complete reaction of the system. The X-ray diffraction analyses of the prepared ceramics have shown the formation of a perovskite structure without any secondary phases. The increase of sintering temperature from 1150 to 1200?C leads to a better densification and decreasing of the Curie temperature (associated with tetragonal-cubic phase transition) closer to the room temperature, i.e. to 290K. The ceramics sintered at 1200?C exhibits a high tunability (n = 1.6) and a reduced hysteretic behaviour. Due to its moderate permittivity, low losses and field dependence permittivity, the KTa0.65Nb0.35O3 ceramics is suitable candidate for application as tunable capacitors.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


2016 ◽  
Vol 16 (4) ◽  
pp. 3684-3689 ◽  
Author(s):  
Xin Min ◽  
Zhaohui Huang ◽  
Minghao Fang ◽  
Yan’gai Liu ◽  
Chao Tang ◽  
...  

In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V–V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).


1997 ◽  
Vol 12 (11) ◽  
pp. 2976-2980 ◽  
Author(s):  
R. Jose ◽  
Asha M. John ◽  
J. Kurian ◽  
P. K. Sajith ◽  
J. Koshy

A new class of complex perovskites REBa2ZrO5.5 (where RE = La, Ce, Eu, and Yb) have been synthesized and sintered as single phase materials by the solid state reaction method. The structure of these materials was studied by x-ray diffraction, and all of them were found to be isostructural, having a cubic perovskite structure. X-ray diffraction and resistivity measurements have shown that there is no detectable chemical reaction between YBa2Cu3O7–delta; and REBa2ZrO5.5 even under severe heat treatment at 950 °C, and that the addition of REBa2ZrO5.5 up to 20 vol.% in YBa2Cu3O7–δ shows no detrimental effect on the superconducting properties of YBa2Cu3O7-δ. Dielectric constants and loss factors are in the range suitable for their use as substrates for microwave applications. Thick films of YBa2Cu3O7–δ fabricated on polycrystalline REBa2ZrO5.5 substrates gave a zero resistance transition temperature Tc(0) ∼ 92 K, indicating the suitability of these materials as substrates for YBa2Cu3O7–δ.


2017 ◽  
Vol 126 (1B) ◽  
pp. 147
Author(s):  
Nguyen Thi Thuy

<p><strong>Abstract: </strong>LaFeO<sub>3</sub> system with doped Ti, Co, Cu was manufactured by solid state reaction method, it was sintered at 1250<sup>0</sup>C and 1290<sup>0</sup>C in 10 hours with a heating rate of 3<sup>0</sup>C/min. Using X-ray diffraction and Scanning Electron Microscope (SEM) to examine the structure, it reveals that samples are single-phase and orthogonal-perovskite structure describing by the Pnma space group, the unit cell volume of the samples increases when Ti, Co, Cu are doped to replace ion Fe<sup>+3</sup>. The size of particle increase while raising the temperature of sintering. Measuring the resistance which depends on temperature between the room temperature and 1000K, it can be seen that when doping Co, Cu with the nominal component La(Fe<sub>0,2</sub>Co<sub>0,2</sub>Ti<sub>0,6</sub>)O<sub>3</sub> and La(Fe<sub>0,4</sub>Cu<sub>0,1</sub>Ti<sub>0,5</sub>)O<sub>3 </sub>, the conductivity of samples increases respectively. Especially, the conductivity of Cu doped sample is higher than two other samples, and reach the highest conductivity at about 900<sup>0</sup>C, Seebeck coefficient S of La(Fe<sub>0.6</sub>Ti<sub>0.4</sub>)O<sub>3</sub> can be change from positive to negative at the temperature of around 700<sup>0</sup>C.</p>


2021 ◽  
pp. 2140006
Author(s):  
B. R. Moya ◽  
A. C. Silva ◽  
A. Peláiz-Barranco ◽  
J. D. S. Guerra

(1–[Formula: see text]Bi[Formula: see text]Na[Formula: see text]TiO3–[Formula: see text]BaTiO3 lead-free ceramics have been obtained from the conventional solid-state reaction sintering method. The structural properties were investigated from X-ray diffraction and Raman spectroscopy techniques. Results revealed well-crystallized ceramic samples with perovskite structure. Microstructural properties, obtained from scanning electron microscopy measurements, have shown high density with very low porosity level. The dielectric response, analyzed as a function of the temperature and several frequencies, showed very broad peaks with a strong frequency dependence of the temperature for the maximum dielectric permittivity for the modified system. Results were analyzed considering the influence of the BaTiO3 content on the studied physical properties.


Sign in / Sign up

Export Citation Format

Share Document