Ionic Transport under Chemical Potential Gradients - Kinetic Demixing and Decomposition in Metal Oxides and Scale Growth in High-Temperature Oxidation

2011 ◽  
Vol 696 ◽  
pp. 28-33
Author(s):  
Manfred Martin

In oxides which are exposed to thermodynamic potential gradients, transport processes of the mobile components occur. These transport processes and the coupling between different processes are not only of fundamental interest, but are also the origin of degradation processes, such as kinetic demixing, kinetic decomposition, and changes in the morphology of the material. The kinetics of high temperature oxidation processes of metals can be studiedin situby X-ray absorption spectroscopy (XAS), optical microscopy and X-ray diffraction (XRD) at elevated temperatures and defined oxygen partial pressures. As an example, thein situXAS investigation of the oxidation of cobalt, forming layers of CoO and Co3O4, will be discussed.

1992 ◽  
Vol 36 ◽  
pp. 411-422
Author(s):  
Chun Liu ◽  
Jean-Lou Lebrun ◽  
François Sibieude

AbstractA high temperature in situ X-Tay diffraction (HTXRD) instrument was devised for residual stress (RS) and X-ray elastic constant (XECs) investigations. The aim was to gain a better understanding of the stresses developed during high temperature oxidation, which is essential for the lifetime improvement of refractory alloys. The investigators use sin2ψ method to survey the stress evolution during oxidation in both the scale and the substrate, and differential method to determine the XECs that relate the measured/measurable deformation to the stress state of the materials studied. The stresses on the Ni/NiO system are measured in situ. The XECs are determined on XC75 steel samples. This paper presents the theories of stresses and XECs determined by HTXRD and briefly discusses the experimental results.


2007 ◽  
Vol 546-549 ◽  
pp. 1489-1494 ◽  
Author(s):  
Ai Qin Liu ◽  
Shu Suo Li ◽  
Lu Sun ◽  
Ya Fang Han

Nb-16Si-24Ti-6Cr-6Al-2Hf-xB(x=0, 0.5, 1, 2, 4, 6) in situ composites were prepared by arc-melting. Microstructure and the effect of boron on 1250C oxidation resistance of the composites were investigated by scanning electron microscopy(SEM) and X-ray energy disperse spectrum(EDS) as well as X-ray diffraction(XRD). The experimental results showed that the high temperature oxidation resistance of the alloy was remarkably improved by adding proper amount of boron. This may be resulted from several beneficial roles of boron, i.e., boron improves the resistance of Nb5Si3 by solid solution strengthening, inhibits the diffusion of oxygen in the matrix, improves the adherence between the oxide scale and the substrate and increases the cracking resistance of the oxide scale.


2002 ◽  
Vol 12 (6) ◽  
pp. 39-46
Author(s):  
R. Cueff ◽  
H. Buscail ◽  
E. Caudron ◽  
C. Issartel ◽  
S. Perrier ◽  
...  

2002 ◽  
Vol 17 (10) ◽  
pp. 2489-2498 ◽  
Author(s):  
U. Koops ◽  
D. Hesse ◽  
M. Martin

The crystallographic orientation plays an important role in high-temperature oxidation of the intermetallic compound CoGa. When CoGa is exposed to air at elevated temperatures, the oxide β–Ga2O3 is formed, and different scale growth rates are observed, depending on the crystallographic orientation of the CoGa grains. This dependence is a consequence of the anisotropy of the gallium diffusion rate through the β–Ga2O3 scale and of a topotaxial orientation relationship occurring between β–Ga2O3 and CoGa. The combination of ex situ techniques, such as transmission electron microscopy and electron backscatter diffraction with optical microscopy, applied in situ resulted in a thorough understanding of these relations and of the oxidation process in general.


1998 ◽  
Vol 37 (Part 1, No. 7A) ◽  
pp. 4160-4161 ◽  
Author(s):  
Toshiki Kingetsu ◽  
Kenjiro Ito ◽  
Masaharu Takehara

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Grzegorz Moskal ◽  
Damian Migas ◽  
Dawid Niemiec ◽  
Agnieszka Tomaszewska

Cobalt-based γ–γ′ superalloys are novel heat-resistant materials suitable for high-temperature applications, such as components of the turbine engine. These alloys exhibit favorable strength and corrosion resistance at high temperatures owing to the γ–γ′ microstructure, analogous to that of Ni-based superalloys. The aim of this paper is to evaluate the oxidation behavior of basic Co-9Al-9W (at%) and new tungsten-free Co-10Al-5Mo-2Nb (at%) alloys at elevated temperatures. The investigation is concerned with thermogravimetric studies in the temperature range of 40–1200 °C. The oxidized surfaces after high temperature oxidation have been characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction analysis (XRD).


2014 ◽  
Vol 216 ◽  
pp. 79-84
Author(s):  
Carsten Strübbe ◽  
Gabriela Marginean ◽  
Viorel Aurel Serban

The high temperature oxidation behaviour of Ni-Cr-B-Si coatings with a higher Si-content was investigated in order to evaluate the suitability of such materials especially for novel applications concerning highly aggressive environments like metal dusting. Metal dusting is a corrosion phenomenon that occurs in reducing-, carbon-supersaturated (ac>1) gaseous atmosphere, containing CO, H2, CO2 and H2O, at elevated temperatures between 400 and 800°C. Metal dusting reactions can be classified into two types. The first one concerns Fe-alloys, where Fe3C is growing on the surface. The second one is related to the reaction of Ni, Co and their alloys, where the destruction takes place through inward growth or direct ingrowth of graphite, without forming the metastable Fe3C. Regarding to the literature, metal dusting is typically encountered in industrial furnaces, but mainly in the chemical or petrochemical industry. The way to suppress metal dusting is to stop the dissociation of the carbon source or to stop the carbon ingress in the material. One possibility in order to avoid the carburization of Fe, Ni, Co and their alloys is to preoxidize the samples. Based on the reducing atmosphere, where metal dusting occurs, the isothermal outsourcing for the formation of a protective Al-, Cr- or Si-oxide layer on the samples in air is mostly necessary. The role of a stable Al2O3 and Cr2O3-layer on the sample as a diffusion barrier against the carbon ingress, based on their low solubility for carbon, has already been investigated and proved by many scientists. The formation of a protective and thermodynamically very stable SiO2 scale was also investigated. Within the scope of this work, the influence of a higher Si-content (4,5 wt%) in NiCrBSi-alloys, depending on the temperature, was analyzed. For this purpose the samples were oxidized in air at 600, 700 and 800°C respectively. The surface morphology and the phase composition of the grown oxide scales were characterized by means of scanning electron microscopy combined with energy dispersive X-ray (SEM/EDX) and by X-ray diffraction (XRD) technique. The experimental results demonstrate the importance of silicon content on the coatings properties, respectively on the stability of the formed oxide scale (free of micro cracks, no spallation). This element is able to form beside chromium, a dense oxide layer on the sample surface, protecting it against further degradation induced by the atmosphere in different high temperature applications. Moreover, the increased chromium content of the feedstock powder (from 10 wt% in previous work to 12,5 wt%) demonstrated that the Ni-Cr-B-Si coatings exposed at 600°C, 700°C as well as at 800°C were not susceptible to internal oxidation.


Sign in / Sign up

Export Citation Format

Share Document