Development and Key Technologies of High-Speed Grinding

2012 ◽  
Vol 723 ◽  
pp. 445-449 ◽  
Author(s):  
Yong Yu ◽  
Pei Quan Guo ◽  
Yan Ke Cao ◽  
Xiao Wei Wang ◽  
Pu Zhang

The mechanism and characteristic of high speed grinding and the technology and development of high speed grinding were introduced. High efficiency grinding including ultrahigh speed grinding, high efficiency deep grinding, creep deep grinding and abrasive belt grinding was analyzed. The technology about manufacturing the spindle system in super high speed grinding and the other main interrelated technology about grinding were also described.

2011 ◽  
Vol 189-193 ◽  
pp. 4108-4111 ◽  
Author(s):  
Ya Li Hou ◽  
Chang He Li ◽  
Guo Yu Liu

Abrasive machining is a widely employed finishing process for different-to-cut materials such as metals, ceramics, glass, rocks, etc to achieve close tolerances and good dimensional accuracy and surface integrity. High speed and super-high speed abrasive machining technologies are newest developed advanced machining processes to satisfy super-hardness and difficult-to-machining materials machined. In the present paper, high-speed/super-high speed abrasive machining technologies relate to ultra high speed grinding, quick-point grinding, high efficiency deep-cut grinding were analyzed. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies and the newest development and current states of high speed and super-high speed abrasive machining were investigated. It is concluded that high speed and super-high speed abrasive machining are a promising technology in the future.


2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


2010 ◽  
Vol 156-157 ◽  
pp. 1366-1371 ◽  
Author(s):  
Song Hua Li ◽  
Yu Hou Wu ◽  
Li Xiu Zhang

Trend of the high-speed and high efficiency machining has pushed the continuous demand of higher spindle speed and power for the machining center application. However, Conventional steel spindles are not appropriate for high speed operation because of their high rotational inertia and low damping ratio. Moreover, heat generation and dynamic loading caused by high speed rotation have been obstacles for increasing the speed limit in many conventional steel spindles applications. Apart from optimizing lubrication, the application of new materials is an interesting alternative to increase the boundary speed and life-span of roller bearings for machine-tool spindles. In this study, a high speed grinding motorized spindle equipped with hot isostatically pressed silicon nitride (HIPSN) fully-ceramic ball bearings without inner rings and yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic spindle shaft was designed for higher speed, rigidity, precision and longer operating life. Furthermore, the characteristics of ceramic motorized spindle, such as temperature increase, vibration, power, rigidity, noise and so on, were investigated by the experimentation. The results show that the ceramic motorized spindles have good behaviors under low load, high speed grinding conditions.


2011 ◽  
Vol 101-102 ◽  
pp. 1101-1104
Author(s):  
Hong Li

The experiment on slender shaft open-cycle belt grinding process is conducted in this paper. The research objects are dimensional accuracy and deviation from roundness error, the changes of which are emphasized after the belt grinding. And the factors affecting the working accuracy of the belt grinding are analyzed. Some measures for improving working accuracy of the belt grinding are put forward. Research result shows that by installing a belt grinding device on a lathe to grind the slender shafts can improve the accuracy with high efficiency.


2009 ◽  
Vol 69-70 ◽  
pp. 359-363 ◽  
Author(s):  
Xin Li Tian ◽  
Jun Fei Yang ◽  
Chao Liu ◽  
Bao Guo Zhang

Based on the comprehensive summary of latest research achievements of Laser and EDM technologies in home and abroad, the other advanced machining technologies is summarized briefly, such as Ultrasonic Wave, Microwave machining techniques and their composite machining technologies, as well as High-speed (Super High-speed) Grinding, ELID Grinding and Interface Thermal Chemistry Reaction Aided Machining technologies developed on the basis of traditional grinding technology. At last, it is forecasted that the necessary direction of advanced technologies used for ceramics is combinatorial machining technologies of two or more kinds of advanced technologies.


2010 ◽  
Vol 156-157 ◽  
pp. 886-889
Author(s):  
Zhi Huang ◽  
Wei Wen Zhang ◽  
Yun Huang ◽  
Yue Yu Wu

This paper brings forward a method which can grinding edge and welding seam in kitchen sink manufacture with high efficiency abrasive belt grinding technology to replace manual grinding way, expatiates this new gantry grinding machine structure design and trimming edge along cuvre contour by CNC, gives a application example to grinding sink, finally summarizes this new grinding techniques and grinding machine.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wengang Fan ◽  
Guangyou Hou ◽  
Wenxi Wang ◽  
Yuefeng Wu

Nowadays, applying rail grinding has been worldwide recognized as the routine maintenance approach to improving the wheel-rail relationship, as well as extending the rail’s serving life. However, the traditional rail repair technology with the abrasive wheel or the milling cutter is getting harder to meet the increasing demand for high efficiency with high speed. In this paper, according to the engineering requirements and constraints, a new fast rail-grinding car based on open-structured belt grinding technology was designed for the corrugation treatment on high-speed railways. A corresponding simulation model was established and its dynamic working performance was then assessed by SIMPACK software. Results of the four dynamic indices for both straight and curve tracks were within the limits, which had verified the design rationality of the new rail-grinding car. Those dynamic indices are the lateral vibration acceleration, the vertical vibration acceleration, the axle transverse force, and the derailment coefficient.


Sign in / Sign up

Export Citation Format

Share Document