Development and Experimental Investigation of a High Speed Grinding Spindle Equipped with Fully-Ceramic Bearings and Ceramic Shaft

2010 ◽  
Vol 156-157 ◽  
pp. 1366-1371 ◽  
Author(s):  
Song Hua Li ◽  
Yu Hou Wu ◽  
Li Xiu Zhang

Trend of the high-speed and high efficiency machining has pushed the continuous demand of higher spindle speed and power for the machining center application. However, Conventional steel spindles are not appropriate for high speed operation because of their high rotational inertia and low damping ratio. Moreover, heat generation and dynamic loading caused by high speed rotation have been obstacles for increasing the speed limit in many conventional steel spindles applications. Apart from optimizing lubrication, the application of new materials is an interesting alternative to increase the boundary speed and life-span of roller bearings for machine-tool spindles. In this study, a high speed grinding motorized spindle equipped with hot isostatically pressed silicon nitride (HIPSN) fully-ceramic ball bearings without inner rings and yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic spindle shaft was designed for higher speed, rigidity, precision and longer operating life. Furthermore, the characteristics of ceramic motorized spindle, such as temperature increase, vibration, power, rigidity, noise and so on, were investigated by the experimentation. The results show that the ceramic motorized spindles have good behaviors under low load, high speed grinding conditions.

2010 ◽  
Vol 37-38 ◽  
pp. 839-843 ◽  
Author(s):  
Song Hua Li ◽  
Yu Hou Wu ◽  
Ke Zhang

Recently, hybrid ceramic bearings and oil/air lubrication have been used more and more on high speed spindles. However, applying an appropriate lubrication and the hybrid bearings can’t be overemphasized, and the oil/air supply with inadequate parameters is undesirable. In this study, a high speed ceramic spindle equipped with HIPSN (Hot Isostatically Pressed Silicon Nitride) full-ceramic ball bearing and Y-TZP (Yttria partially stabilized Tetragonal Zirconia Polycrystal) ceramic spindle shaft was designed for higher speed, stiffness, precision and longer operating life. Furthermore, the performance of a high-speed ceramic motorized spindle under different lubrication parameters was investigated. The optimum lubrication conditions that create the smallest temperature increase were obtained by the applying of the Taguchi method. The results show that oil volume per lubrication cycle, interval time per lubrication cycle and air pressure are three pacing factors that affect the temperature increase most significantly in ceramic motorized spindle with oil/air lubrication.


2011 ◽  
Vol 189-193 ◽  
pp. 1696-1699 ◽  
Author(s):  
Yu Hou Wu ◽  
Li Xiu Zhang

High speed machining (HSM) technology is used in a broad range of applications to machine ferrous metals and nonmetallic material. The electrical spindle is one of the major elements to keep the machine running at high productivity. In recently years, the requirement of rotational speed and rigidity of electrical spindle is getting higher and higher in order to satisfy the high speed processing. So a high speed grinding electrical spindle equipped with hot isostatic pressed silicon nitride (HIPSN) fully-ceramic ball bearings without inner rings and yttria partially stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic spindle shaft is designed for higher speed and rigidity. Because the processing precision is relevant to the vibration of electrical spindle, it is necessary the vibration and noise of the ceramic electrical spindle is detected. This paper presents results of vibration and noise of the ceramic electrical spindle and analysis the reason of phenomenon. The analysis shows the vibration and noise of the ceramic electrical spindle is up to the standard.


2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


Author(s):  
Igor Ivanov ◽  
Dmitriy Kononov ◽  
Sergey Urushev

Object: To show the lack of wheelset operating life efficiency use in case traditional methods of wheel tread reprofiling were used in the process of repair works. To consider the possibilities of further improvement of this process on the basis of new reprofiling technologies, using the deep and high-speed grinding. Methods: The methods of wheel tread reprofiling were analyzed, the effective process solutions, based on theoretical conclusions and current practical knowledge, were studied. Results: Wheel set wastage in case of using the traditional ways of reprofiling was estimated. Preliminary parameters of wheelset reprofiling modes using high-speed grinding were estimated, providing for the increase in wheel set operational life and reprofiling performance enhancement. Practical importance: The appropriateness of rolling stock wheel tread reprofiling, by using the method of infeed high-speed profile grinding, was presented. The obtained results may be applied in the development of requirements specification for wheel tread reprofiling machine at repair facilities of the Russian Railways.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuzhu Guo ◽  
Tianning Chen

High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.


2012 ◽  
Vol 723 ◽  
pp. 445-449 ◽  
Author(s):  
Yong Yu ◽  
Pei Quan Guo ◽  
Yan Ke Cao ◽  
Xiao Wei Wang ◽  
Pu Zhang

The mechanism and characteristic of high speed grinding and the technology and development of high speed grinding were introduced. High efficiency grinding including ultrahigh speed grinding, high efficiency deep grinding, creep deep grinding and abrasive belt grinding was analyzed. The technology about manufacturing the spindle system in super high speed grinding and the other main interrelated technology about grinding were also described.


2011 ◽  
Vol 189-193 ◽  
pp. 4108-4111 ◽  
Author(s):  
Ya Li Hou ◽  
Chang He Li ◽  
Guo Yu Liu

Abrasive machining is a widely employed finishing process for different-to-cut materials such as metals, ceramics, glass, rocks, etc to achieve close tolerances and good dimensional accuracy and surface integrity. High speed and super-high speed abrasive machining technologies are newest developed advanced machining processes to satisfy super-hardness and difficult-to-machining materials machined. In the present paper, high-speed/super-high speed abrasive machining technologies relate to ultra high speed grinding, quick-point grinding, high efficiency deep-cut grinding were analyzed. The efficiency and parameters range of these abrasive machining processes were compared. The key technologies and the newest development and current states of high speed and super-high speed abrasive machining were investigated. It is concluded that high speed and super-high speed abrasive machining are a promising technology in the future.


Sign in / Sign up

Export Citation Format

Share Document