scholarly journals Evaluation of Functionally Graded Ceramic Crucible for Induction Melting of Titanium Based Alloys

2012 ◽  
Vol 730-732 ◽  
pp. 769-774 ◽  
Author(s):  
Fernando Gomes ◽  
Joaquim Barbosa ◽  
Carlos Silva Ribeiro

During the last years a very significant effort to develop a melting crucible for induction melting of Ti based alloys at competitive cost has been carried out by many researchers, where the authors are included. Results obtained so far have shown that no material accomplishes the melting crucibles two main demands: inertness facing titanium alloys and suitable/enough thermal-shock resistance. Until now, yttrium and calcium oxides were those materials that performed best on what concerns to thermodynamic stability. However, in both cases, crucibles thermal-shock resistance was very poor, and there are references to crucibles that cracked during melting. Besides, calcium oxide reveals manipulation problems, due to its high higroscopicity. This paper concerns to the evaluation of zircon based crucibles with Y2O3 inner layer for induction melting of TiAl based alloys. A novel multi layered crucible production technique based in a centrifugally assisted slip casting process followed by a sintering operation is described, and results concerning to crucibles porosity and wall composition and morphology are presented. Crucibles obtained in different processing conditions were used to melt a Ti48Al alloy which was poured in graphite moulds. Experimental results include alloy chemical contamination with residual elements, mainly yttrium and oxygen, microhardness measurement and the presence of yttrium oxide and zircon inclusions in the cast samples. Results concerning to the crucibles behaviour are also presented with particular attention to cracks development. The Y2O3 crucible layer was found to suffer some erosion and be slightly dissolved by the molten alloy and the extent of those phenomena depends on the porosity of the layer surface, for fixed experimental melting conditions.

2016 ◽  
Vol 852 ◽  
pp. 1000-1005 ◽  
Author(s):  
Dong Xing Fu ◽  
Jing Na Liu ◽  
Er Bao Liu ◽  
Zhao Bin Cai ◽  
Xiu Fang Cui ◽  
...  

The interface properties of multi-layered functionally graded Cr3C2-NiCr coatings deposited by plasma spraying technique were experimentally studied in this paper. The microstructure and phase structure of coatings were studied with scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The thermal shock resistance was investigated by cyclic heating and cooling tests using an electro-calefaction furnace. The crack appearances of the coatings were observed carefully. Results show that the plasma sprayed multi-layered functionally graded coatings are compact and the adhesion between the layers and the substrate is good. The coatings have better macro-hardness than the substrate, and the 6-layers coating has the highest macro-hardness and the best wear resistance. Besides, the micro-hardness of coatings increases with increasing content of Cr2C3 in coating materials. Results of cyclic thermal shock show that the main failure styles of the coatings are crack and desquamation and the thermal shock resistance of the coatings is improved obviously by increasing the number of coating layers.


2008 ◽  
Vol 368-372 ◽  
pp. 1633-1635 ◽  
Author(s):  
Zhong Qiu Li ◽  
Jia Chen Liu ◽  
Shun Li ◽  
Bing Zhou ◽  
Wei Jing

LaPO4-ZrO2 composites were prepared by slip casting and pressureless-sintered in air. The effects of LaPO4 addition on microstructure and thermal shock resistance were addressed. The thermal shock resistance of the composites was evaluated by air quenching and a subsequent three-point bending test to determine the strength degradation. Comparisons were made with results from parallel experiments conducted using a ZrO2 ceramic without LaPO4 additions. The reference ZrO2 ceramic showed the expected substantial strength losses when thermally quenched from 470oC above room temperature. By contrast, the LaPO4-ZrO2 ceramics, while displaying reduced strength relative to the reference ZrO2 ceramics, exhibited minimal strength degradation under severe thermal shock conditions.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3865
Author(s):  
Muhammed Anaz Khan ◽  
Annakodi Vivek Anand ◽  
Muthukannan Duraiselvam ◽  
Koppula Srinivas Rao ◽  
Ramachandra Arvind Singh ◽  
...  

In this work, functionally graded lanthanum magnesium hexaluminate (LaMgAl11O19)/yttria-stabilised zirconia (YSZ) thermal barrier coating (FG-TBC), in as-sprayed and laser-glazed conditions, were investigated for their thermal shock resistance and thermal insulation properties. Results were compared with those of a dual-layered coating of LaMgAl11O19 and YSZ (DC-TBC). Thermal shock tests at 1100 °C revealed that the as-sprayed FG-TBC had improved thermal stability, i.e., higher cycle lifetime than the as-sprayed DC-TBC due to its gradient architecture, which minimised stress concentration across its thickness. In contrast, DC-TBC spalled at the interface due to the difference in the coefficient of thermal expansion between the LaMgAl11O19 and YSZ layers. Laser glazing improved cycle lifetimes of both the types of coatings. Microstructural changes, mainly the formation of segmentation cracks in the laser-glazed surfaces, provided strain tolerance during thermal cycles. Infrared rapid heating of the coatings up to 1000 °C showed that the laser-glazed FG-TBC had better thermal insulation capability, as interlamellar pores entrapped gas and constrained heat transfer across its thickness. From the investigation, it is inferred that (i) FG-TBC has better thermal shock resistance and thermal insulation capability than DC-TBC and (ii) laser glazing can significantly enhance the overall thermal performance of the coatings. Laser-glazed FG-TBC provides the best heat management, and has good potential for applications that require effective heat management, such as in gas turbines.


Author(s):  
R. A. Alliegro ◽  
S. H. Coes

Two unique ceramic materials offer the gas turbine designer the opportunity to substitute uncooled high temperature components for the presently cooled metal and alloy ones. Recrystallized silicon carbide made by a casting process and reaction bonded silicon nitride shaped by a simple machining process before firing, offer not only high temperature materials capable of living in the gas turbine environment, but also an intricacy of shape consistent with combustor, shroud and associated high temperature component needs. Silicon carbide’s 3200 F capability and its thermal shock resistance makes it a sound choice; silicon nitride’s low expansion coefficient, thermal shock resistance, and 2900 F capability make it a material of real merit. The properties of these materials are discussed in detail along with potential areas of application and design capabilities.


Sign in / Sign up

Export Citation Format

Share Document