Recombination and Excess Currents in 4H-SiC Structure with Low-Doped n-Region

2013 ◽  
Vol 740-742 ◽  
pp. 565-568 ◽  
Author(s):  
Anatoly M. Strel'chuk ◽  
Evgenia V. Kalinina

Presented in this paper are the results of a study of forward and reverse current-voltage characteristics of the 4H-SiC pn structures produced by implantation of Al+ ions in low-doped ((5-7)∙1014cm-3) n-type conductivity epitaxial layer. A forward current was identified which is consistent with the model of recombination in the space charge region of a pn junction via a deep level: J=Joexp(qU/nkT), where Jo=Jo*exp[-Ea/(kT)] (or J= Jo*exp[(qU-2Ea)/nkT)]) with the ideality factor n=2. Parameters of this current are as follows: Jo(293 K) ~ 8∙10-25 A/cm2, Ea 1.73-1.75 eV (2Ea3.46-3.5 eV), Jo*~7∙105 A/cm2. A comparison of the experimental and model-based values of Ea, with allowance for all clearly defined temperature dependences, both strong and weak, of the model of recombination in the space charge region shows that the effective lifetime increases and effective trapping cross section σeff of the recombination level decreases with increasing temperature: σeff ~ T-2÷σeff ~ T-2.5 or σeff ~exp(ΔE /kT) where ΔE=80-100 meV. Reverse current practically in whole temperature range is excess current, only at high temperatures (~800 K) reverse current became close to generation current in space charge region. Special interest are the excess currents as a result of the application of a reverse or forward voltage at high temperature. The barrier type excess currents is characteristic of SiC.

2006 ◽  
Vol 527-529 ◽  
pp. 1339-1342 ◽  
Author(s):  
Michael E. Levinshtein ◽  
Pavel A. Ivanov ◽  
Mykola S. Boltovets ◽  
Valentyn A. Krivutsa ◽  
John W. Palmour ◽  
...  

Steady-state and transient characteristics of packaged 6-kV 4H-SiC junction diodes have been investigated in the temperature range Т = 300 – 773 К. Analysis of the forward current-voltage characteristics and reverse current recovery waveforms shows that the lifetimeτ of non-equilibrium carriers in the base of the diodes steadily increases with temperature across the entire temperature interval. The rise in τ and decrease in carrier mobilities and diffusion coefficients with increasing temperature nearly compensate each other as regards their effect on the differential resistance of the diode, Rd. As a result, Rd is virtually temperature independent. An appreciable modulation of the base resistance takes place at room temperature even at a relatively small current density j of 20 A/cm2. At T = 800 K and j = 20 A/cm2, a very deep level of the base modulation has been observed. The bulk reverse current is governed by carrier generation in the space-charge region via a trap with activation energy of 1.62 eV. The surface leakage current of packaged structures does not exceed 2×10-6 А at T = 773 K and a reverse bias of 300 V.


e-Polymers ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 75-82
Author(s):  
Haci Ökkes Demir ◽  
Zakir Caldıran ◽  
Kadem Meral ◽  
Yılmaz Şahin ◽  
Murat Acar ◽  
...  

AbstractA poly(phenoxy-imine)/p-silicon rectifying device was fabricated and the current-voltage characteristics of the device were examined as a function of temperature in the 40–300 K range. The temperature dependence of the main parameters, namely, the barrier height (Φb), ideality factor (η), reverse current (I0) and series resistance (Rs), were investigated. It was seen that the Φb and the I0 values of the device increased with increasing temperature, while the η and the Rs values decreased. The temperature dependences of the Φb and the η were interpreted by the assumption of a Gaussian distribution of the barrier heights arising from barrier inhomogeneities that prevailed at the interface of the poly(phenoxyimine)/p-silicon. From ln(I0/T2) vs. 1/ηT plot, the values of the activation energy (Ea) and Richardson constant (A*) were calculated as 0.324 eV and 2.84×10-7 A cm-2K-2, respectively. The experimental value of the Rs from the forward current-voltage plots decreased with an increase in the temperature.


Author(s):  
И.Г. Орлецкий ◽  
М.И. Илащук ◽  
М.Н. Солован ◽  
П.Д. Марьянчук ◽  
О.А. Парфенюк ◽  
...  

AbstractThe conditions for fabricating n -FeS_2/ p -Cd_1 –_ x Zn_ x Te heterojunctions by the spray pyrolysis of thin pyrite films on p -Cd_1 –_ x Zn_ x Te crystalline substrates are investigated. A comprehensive analysis of the current–voltage ( I – V ) and capacitance–voltage ( C – V ) characteristics makes it possible to establish the limitation of the reverse current by the space-charge region at small reverse biases and consider the mechanisms of current formation with the participation of energy levels near the heterojunction. A model of the energy profile of the n -FeS_2/ p -Cd_1 –_ x Zn_ x Te heterojunction is proposed, which turns out to be in good correspondence with the experimentally determined parameters and the dynamics of their change with a variation in temperature.


2021 ◽  
pp. 63-68

The current-voltage characteristics of p-Si–n-Si1-xSnx (0  x  0.04) structures have been studied in the temperature range from 293 to 453 K. It was determined that the initial sections of the direct branches of the I–V characteristic at all temperatures are described by the expo-nential dependence of the current on the voltage, and then a quadratic section follows, which is described by the drift mechanism of carrier transfer in the regime of ohmic relaxation of the space charge. We determined the activation energies of two deep levels with values of 0.21 eV and 0.35 eV, which are assigned to interstitial Sn atoms and A-centers, respectively. The prospect of using solid solutions Si1-xSnx (0  x  0.04), obtained on silicon substrates, as an active material in the manufacture of injection diodes is substantiated.


2010 ◽  
Vol 207 (6) ◽  
pp. 1489-1496 ◽  
Author(s):  
R. Nana ◽  
P. Gnanachchelvi ◽  
M. A. Awaah ◽  
M. H. Gowda ◽  
A. M. Kamto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document