On the Influence of Mesh Size during Finite Element Simulation of Equal Channel Angular Pressing

2013 ◽  
Vol 773-774 ◽  
pp. 160-165
Author(s):  
Guan Yu Deng ◽  
C. Lu ◽  
Li Hong Su ◽  
Mao Liu ◽  
Pei Tang Wei ◽  
...  

Equal channel angular pressing (ECAP) has attracted a lot of interest due to its ability for fabrication of bulk ultrafine-grained materials. With the development of computer skills, the computer-aided methods become very important and useful in understanding the deformation mechanism of ECAP. In this study, the influence of mesh size during finite element simulations of ECAP has been examined based on the plane strain condition assumption. Four different meshes have been compared and these results indicate that Mesh 600 and Mesh 2400 fail to capture the deformation features of ECAP accurately. Large corner gaps develop in these two cases and the simulated strains are smaller than the analytical calculations. Similar results have been obtained between Mesh 6369 and Mesh 12000 and the predicted features of plastic deformation and texture evolution are consistent with the experimental results.

2008 ◽  
Vol 579 ◽  
pp. 29-40 ◽  
Author(s):  
Cheng Xu ◽  
Megumi Kawasaki ◽  
Roberto B. Figueiredo ◽  
Zhi Chao Duan ◽  
Terence G. Langdon

Equal-channel angular pressing (ECAP) is a convenient processing method for refining the grain size of bulk materials to the submicrometer level. Metallic alloys processed by ECAP often exhibit excellent superplastic characteristics including superplasticity at high strain rates. This paper summarizes recent experiments designed to evaluate the occurrence of superplasticity in representative aluminum and magnesium alloys and in the Zn-22% Al eutectoid alloy.


2014 ◽  
Vol 609-610 ◽  
pp. 495-499
Author(s):  
Guo Cheng Ren ◽  
Xiao Juan Lin ◽  
Shu Bo Xu

The microstructure and material properties of AZ31 magnesium alloy are very sensitive to process parameters, which directly determine the service properties. To explore and understand the deformation behavior and the optimization of the deformation process, the microstructure evolution during equal channel angular pressing was predicted by using the DEFORM-3D software package at different temperature. To verify the finite element simulation results, the microstructure across the transverse direction of the billet was measured. The results show that the effects strain and deformation temperatures on the microstructure evolution of AZ31 magnesium during ECAP process are significant, and a good agreement between the predicted and experimental results was obtained, which confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructure evolution of ECAP process for AZ31 magnesium.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1621-1626
Author(s):  
HYOUNG SEOP KIM

The technique of severe plastic deformation (SPD) enables one to produce metals and alloys with an ultrafine grain size of about 100 nm and less. As the mechanical properties of such ultrafine grained materials are governed by the plastic deformation during the SPD process, the understanding of the stress and strain development in a workpiece is very important for optimizing the SPD process design and for microstructural control. The objectives of this work is to present a constitutive model based on the dislocation density and dislocation cell evolution for large plastic strains as applied to equal channel angular pressing (ECAP). This paper briefly introduces the constitutive model and presents the results obtained with this model for ECAP by the finite element method.


2010 ◽  
Vol 97-101 ◽  
pp. 3075-3078
Author(s):  
Gang Yi Cai ◽  
Xiao Xia Liu

Finite element simulation of the effects of mould angle on the equal channel angular pressing (ECAP) for Al-Zn-Mg-Cu aluminum alloy was investigated by using DEFORM-3D program. The results show that the work load ascended with the increasing of the mould angle and was divided into five stages including rapid increasing stage, steady stage, rapid increasing stage, steady stage and rapid drop stage. When the angle decreased from 150° to 90°, the maximum load increased by 2.87 times and the energy consuming increased by 2.36 times. In addition, with the decreasing of mould angle, the average effective strain increased after single extrusion, while the degree of effective strain uniformity of the sample decreased. There were greater strain grads between inner and surface part. As mentioned above, large angle mould should be adopted on ECAP for Al-Zn-Mg-Cu aluminum alloy in order to ensure extrusion smoothly and attain homogeneous fine grain.


2009 ◽  
Vol 633-634 ◽  
pp. 365-372
Author(s):  
Vladimir Serebryany ◽  
Sergey V. Dobatkin ◽  
V.I. Kopylov ◽  
D.I. Nikolayev ◽  
Heinz Günter Brokmeier

Equal channel angular pressing (ECAP) was used for grain refinement and texture modification in the initial pressed Mg-Al-Zn alloy to study the possibility to enhance the low-temperature deformability of the material. The effect of different ECAP regimes by routes A, C, and BC on the submicrocrystalline grain formation, texture evolution, and plasticity of the alloy have been investigated. The ECAP of the alloy results in the formation of ultrafine grained structure with a grain size of 0.8-3.5 µm independent of pressing routes and regimes. The ECAP also drastically changes the axial texture by splitting the initial texture characterized by a sharp basal component to several more scattered orientations. The degree of the orientation scattering depends on the ECAP regime and route. It is proposed to estimate the effect of the texture on the yield strength and plasticity of the alloy after ECAP through generalized Schmid factors. The comparable calculated and experimental results are obtained only for yield strength.


Sign in / Sign up

Export Citation Format

Share Document